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Abstract

Although the Fama-French three-factor model captures most CAPM anomalies, it still fails to
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SMB and HML risks are time varying and that momentum and reversal return patterns have
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1. Introduction

During the late 1970s, evidence started to accumulate against the then-accepted paradigm of

market efficiency. However, as argued by Fama (1991), the “abnormal” returns found by many

researchers may not be reliable evidence against market efficiency if the equilibrium pricing

model adopted in tests—typically the static CAPM by Sharpe (1964), Lintner (1965), and Black

(1972)—is incorrect. Confirming Fama’s misgivings about the static CAPM, Fama and French

(hereafter FF) (1992) demonstrate that there seems to be no relation between the average stock

returns and the conventionally estimated beta; in contrast, the market value of the firm’s equity

and book-to-market ratio do significantly explain average stock returns. In their subsequent

work, FF (1993) propose a related three-factor asset pricing model that does seem to describe

adequately the average stock excess returns. The FF three factors are the market return in excess

of a risk-free rate, or EMR, the average return on small-size firms minus average returns on big-

cap firms, or SMB (a factor that is related to size), and the average return on high book-to-

market firms minus the average return on low book-to-market firms, or HML (a factor that is

related to book-to-market equity).

Using their three-factor model, FF (1996) clear up CAPM anomalies such as size, book-

to-market, earnings/price, cash flow/price, and past sales growth.1 In view of FF’s choice of the

                                                

1 These anomalies are documented in Banz (1981), Basu (1983), Rosenberg, Reid, and Lanstern (1985), and

Lakonishok, Shleifer, and Vishny (1994), and among others. There are also anomalies related to past returns.

DeBondt and Thaler (1985,1987) document the return reversal phenomenon; see also Ball and Kothari (1989),

Chopra, Lakonishok, and Ritter (1992), and others for the relevant debate. For momentum, see Jagadeesh and

Titman (1993) and Asness (1995).
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factor portfolios, it comes as no surprise that their model can absorb the size and book-to-market

effects, as well as other effects that bear an obvious relation to size and book-to-market. What

makes their findings more appealing is that the same three factors are also able to explain long-

term return reversal, namely, past long-term losers (winners) tend to become future winners

(losers), a phenomenon that before FF(1996) had been thought to be unconnected to size and

book-to-market. However, one anomaly remains unresolved by FF (1996): the three-factor

model cannot capture the short-term return continuation (or momentum) phenomenon. As Chan,

Jegadeesh, and Lakonishok (1996) put it: “in the absence of an explanation, the evidence on

momentum stands out as a major unresolved puzzle.”

The main finding of this paper is that incorporating conditioning information into the FF

three factor model is a crucial step to capture return continuation as well as reversal. My

motivation for considering a conditional version of the FF model is that, in a dynamic world,

risk exposures as well as prices of risks are likely to vary through time and to depend on

conditioning information. My emphasis on conditioning information is similar to Ferson and

Harvey (1999) but in different ways. Using 25 book-to-market and size-sorted test portfolios,

Ferson and Harvey (1999) show that the FF three factors fail in conditional regression tests,

similar to the first part of this paper using portfolios sorted on past returns. But I argue that

conditional SMB and HML risks do reflect time-varying risk characteristics that may distinguish

return momentum and reversal patterns. Ferson and Harvey further show that an additional

pricing factor that is based purely on conditioning information (predetermined variables) washes

out the FF three factors but alone still cannot explain the cross section of asset returns in the

Fama-MacBath (1973) two-pass cross-sectional tests. The second part of this paper is

significantly different in this regard as shown below in detail. Accordingly, I proceed in two
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steps.

In the first stage, I test the FF assumption that the exposures are constant. To that aim, the

paper investigates four portfolios: the best short-term winners and the worst short-term losers

(i.e., the extreme momentum portfolios) and the best long-term winners and the worst long-term

losers (i.e., the extreme reversal portfolios). I use a conditional regression model, which

explicitly assumes that the risk exposures are linear functions of the information variables. I find

overwhelming evidence that the SMB and HML risks are time varying.

A further exploratory investigation reveals an important difference in the time paths of

risk patterns between the return momentum and reversal. I show that, like the SMB risks, the

HML risks are significantly negatively cross-correlated between short-term winners and losers

but significantly positively cross-correlated between long-term winners and losers. Since time-

variation characteristics of risks like this can be important in asset pricing and are missed in the

FF unconditional analysis, it is difficult for their unconditional model to accommodate both the

opposite return patterns of continuation and reversal with the same set of pricing factors.

Therefore, my findings shed more light on the ability of the conditional asset pricing model to

capture the time path behavior of risks and hence to explain both momentum and reversal.

However, the conditional regression model still fails to explain average returns even

though conditioning information has been taken into consideration (see also Ferson and Harvey,

1999). This failure in itself does not provide sufficient evidence against the conditional FF

model. First, the conditional regression model imposes a very specific (i.e., linear) structure on

the risk exposures, which can be relaxed in different ways. Second, in the first-pass tests, each

portfolio equation is estimated in isolation without cross-sectional constraints. As argued by

Kandel and Stambaugh (1995), to assess a model properly, one definitely needs a cross-
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sectional picture, using the covariance matrix of asset returns, because otherwise the relation

between expected returns and estimated risk exposures can vary arbitrarily across equations. For

this reason, FF (1996) base their final conclusions on the multivariate test by Gibbons, Ross, and

Shanken (hereafter GRS) (1989). In the same spirit, in the second stage of this analysis, I employ

parsimonious conditional cross-sectional asset pricing tests, which can be viewed as a

conditional analogue to the static GRS test.

In the conditional cross-sectional tests, I first follow the econometric specification of

Dumas and Solnik (1995). This approach takes a stand on the functional form of a price of risk

(i.e., the reward-to-risk ratio or the expected factor return divided by the variance of the factor).

Prices of risks are assumed linearly related to conditioning information variables that to some

extent predict future returns but impose no structure on the covariance. With no-arbitrage

conditions imposed across test portfolios, the conditional FF model is tested using Hansen’s

(1982) Generalized Method of Moment (GMM), first on decile portfolios that exhibit

continuation and then on decile portfolios that exhibit reversal. As in FF (1996), I cannot reject

the hypothesis that the conditional FF model produces zero pricing errors for return reversal

portfolios; the interesting, new result, however, is that I can not reject the hypothesis of zero

pricing errors for return momentum portfolios.

These tests still have a drawback in that they are conducted on two separate sets of

portfolios —one constructed to show return momentum, the other to exhibit reversal. Thus, the

estimated prices of risks depend on which test portfolios are to be examined. However, if the law

of one price holds, one vector of prices of risks should price both the momentum and reversal

portfolios. Tests that ignore these constraints may lack the power to assess a model because they

leave too many degrees of freedom in econometrically fitting separate data sets.
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To mitigate these problems, I also run the Dumas-Solnik pricing tests on ten portfolios,

five of which now exhibit momentum, and the other five reversal. A related important issue,

which Jagannathan and Wang (1996) point out in the concluding section of their paper, is that

there is no consensus on a common set of test portfolios, which is desired for general asset

pricing, particularly for the robust comparison among models. A particular set of test portfolios

may favor one model but not another. When a model is rejected, one could raise reasonable

doubt by arguing that the test portfolios on which the rejection is based may contain too little

dispersion in the risks that the model in question emphasizes. This issue is, however, less central

to the tests of this paper, because I focus on the ability of a specific model to price different

portfolios rather than run a horse race with different models. In contrast, I need a good set of test

portfolios that characterize all portfolios in question just because it can provide sharper tests of

the particular model (other things being equal).

Lastly, to check for robustness, I also subject this pooled portfolio set to the asset pricing

test used by Harvey (1989). Prices of risks in this test are also assumed linearly related to

instruments, much as in Dumas-Solnik’s approach, but Harvey’s approach examines moment

conditions consisting of nonlinear functions. Despite the differences in these two approaches, the

test results show that one single set of estimated prices of risks tend to price both momentum

and reversal portfolios. In fact, the two sets of estimates of the time-varying prices are

surprisingly robust: the prices of risks from Dumas-Solnik’s approach are nearly perfectly

correlated with their counterparts from Harvey’s approach (correlation coefficients are above

0.95).

The remainder of the paper is organized as follows. Section 2 presents the data and

summary statistics for the portfolios sorted on various past returns as well as for the FF three
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factors and the information variables that are used as instruments. Section 3 summarizes the

basics of the conditional FF three-factor model. Section 4 investigates explicitly the conditional

risk exposures to the FF three factors for extreme winners and losers, using the regression

version of the conditional FF model. Section 5 describes more general conditional cross-

sectional asset pricing tests, and reports the test and estimation results. Section 6 concludes the

paper.

2. Data and summary statistics

In this section, I first replicate the continuation and reversal evidence from FF, using a data set

that contains both more sample years and more stocks. I then describe the factors and the

instrumental variables.

2.1. Portfolios formed on past returns

From the database of the Center for Research in Security Prices (CRSP), I retrieve monthly data

on all NYSE and AMEX US common stocks from July 1958 to December 1995. After setting

aside five years of data for the purpose of ranking (as described below), my test sample runs

from July 1963 to December 1995.

The individual stocks are grouped into equally weighted decile portfolios on the basis of

past continuously compounded monthly returns. As in FF (1996), different ranking periods are

used to form such deciles. To capture short-term past performance, I focus mainly on the ranking

labeled “Past2-12”, i.e., a ranking on the basis of the return between month t-11 and t-1. (The

return in month t is omitted to avoid spurious reversal due to the bid-ask bounce.) To capture

long-run past performance purged of short-term past returns, I form deciles on the basis of

Past13-60, i.e., using returns from t-59 to t-12. For each decile, I then compute monthly post-

formation excess returns, using as the risk-free rate the one-month T-bill holding period return
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(obtained from the SBBI file in Ibbotson Associates).

Throughout this paper, a monthly return of one means one percent per month. The

average monthly excess returns for July 1963 to December 1995 and the t-values of the averages

are presented in Table 1, Panel A. The phenomenon of return continuation (or momentum)

shows up in the decile-classification Past2-12. In this cross-sectional pattern, the worst past

losers (decile 1) show an average post-formation excess return of –0.02 percent per month, while

the best past winners (decile 10) yield a significant average post-formation excess return of 1.46

percent per month (t-value=4.23). Short-term past losers (winners) tend to be future losers

(winners) — hence there is return continuation.

In contrast, the row labeled “Past13-60”, where ranking is based on earlier long-term

performance, shows a pattern of return reversal: in these decile portfolios, the worst past losers

produce a significant average post-formation excess return of 1.41 percent per month (t-

value=3.11), while the best past winners provide an average post-formation excess return of only

0.35 percent per month. The results here are much more pronounced than in FF (1996) with only

NYSE stocks and a shorter sample period by two years.2 Therefore, the patterns of return

continuation and return reversal pose a tougher challenge to asset pricing tests.

In Hansen and Richard (1987), unconditionally efficient portfolios are shown to be

conditionally efficient too. Accordingly, one may wonder what the point is of adding a

conditional test to FF’s earlier work, if FF can already explain return reversal without the use of

                                                

2 I also use alternative classifications that start in months t-11, t-23, t-35, t-47, or t-59, all ending in month t-1.

Consistent with FF (1996), Past2-24 and Past2-36 also give indications of return momentum, while Past2-60 shows

return reversal.
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a conditional model. The reason is that Hansen and Richard’s claim holds true only when the test

portfolios are the same in both unconditional and conditional tests. In the conditional tests that

follow, however, the portfolio set (or the strategy space) is extended by conditioning information

or trading rules (see e.g., Cochrane, 1994 and Dumas and Solnik, 1995). In other words, the

strategy space in my conditional cross sectional test is larger than that which FF use in their

unconditional test. Therefore, it is not a priori obvious that the pattern of return reversal can be

explained by a conditional pricing model.

In the above, the ranking produces either reversal or momentum. I also generate a group

of ten test portfolios, of which five exhibit reversal and the other five continuation. To obtain

this set, the NYSE and AMEX US firms are randomly separated into two subsets. In the first

subset, quintiles are then formed on the basis of short-term performance (portfolios Past2-12q),

while in the second subset the ranking and grouping are ordered on the basis of more long-run

and distant returns (Past13-60q). As shown in Table 1, Panel B, the return continuation pattern

still shows up, with the worst short-term losers (quintile 1) producing an average excess return

of 0.20 (t-value=0.52) and the best short-term winners (quintile 5) achieving a stunning average

excess return of 1.38 (t-value=4.32). Also, the return reversal pattern is still evident: the worst

long-term losers (quintile 1) turn out to be the best winners with a significant average excess

return of 1.14 (t-value=2.99), while the best long-term winners (quintile 5) become the worst

losers with a much inferior performance of 0.47 (t-value=1.60).

2.2. Factors and instrumental variables

The three pricing factors—excess market return (EMR), SMB and HML—were kindly provided

by Eugene Fama and are detailed in FF (1993, 1995, 1996). To get a feel for the factors, the

average excess market return is 0.48 percent per month, and the average returns of the two
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mimicking portfolios, SMB and HML, are equal to 0.25 and 0.44 percent per month for July

1963 through December 1995.

As for the instruments, I need market-wide financial variables that carry information on

the state of the economy that are useful in predicting asset returns. For the selection of factors, I

rely on previous work where the information variables have been extensively screened on their

predictive power (see e.g., Ferson, 1994, for a summary). Thus, although my strategy space

differs from that used by others, my instruments are the ones that are widely used in conditional

asset pricing.3 I use five instruments, which are similar to those used in Harvey (1989) and

Ferson and Harvey (1991): (a) the one-month lagged (NYSE, AMEX, and Nasdaq) value-

weighted market excess return, EMR(–1) (from Fama); (b) the one-month US T-bill rate

observed at the beginning of the return period, TB1 (from the Fama file in CRSP); (c) the yield

spread between three- and one-month US T-bills, TB31 (the three-month T-bill rate observed at

the beginning of the return period also from the Fama file); (d) the yield spread between

Corporate Baa- and Aaa-bonds observable prior to the beginning of the return period, JUNK

(from the Federal Reserve Bulletin); and (e) the one-month lagged spread between a dividend

yield and the one-month T-bill return, DIV(–1).4

                                                

3 This selection method does not necessarily bend our tests in favor of accepting a conditional model. For example,

the conditional CAPM in Harvey (1989) is rejected using a similar set of instruments.

4 The monthly 12-month-accumulated dividend yields are computed as follows (see also Campbell and Ammer,

1993, and Campbell, 1996). I take the differences between the monthly S&P stock returns with and without

dividends (from Ibbotson Associates) to generate a monthly dividend yield series and then convert these dividend

yields into a 12-month (including current month) backward moving average of dividends divided by the end-of-

current-month index price. The use of a moving average eliminates the strong (quarterly) seasonality of dividend

payments, but results in a time series with high autocorrelations. As a partial remedy, following Dumas and Solnik

(1995) and others, the one-month T-bill return is subtracted from the dividend yield.
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Table 2 provides summary statistics for the instruments. The major concern about

Hansen’s (1982) GMM test, which this paper employs later, is that some instruments come close

to non-stationarity. Specifically, the autocorrelation coefficients of the one-month risk-free rate,

TB1, and of the yield spread between Baa- and Aaa-bonds, JUNK, are high at lag 1 (0.95 and

0.97) and do not entirely die out even after 36 months (0.21 and 0.19). This could violate the

strict stationarity assumption that underpins the theoretical asymptotic properties of the GMM.

However, simulation tests with finite sample by Ferson and Foerster (1994) suggest that the

GMM coefficient estimators and test statistics still conform well to some of the theoretical

asymptotic properties even when some instruments are nearly non-stationary.

3. Basics of the conditional FF three-factor model

In the spirit of Merton’s (1973) Intertemporal Capital Asset Pricing Model and Ross’ (1976)

Arbitrage Pricing Theory, FF (1993) propose a multifactor model with three factors: the market

return in excess of a risk-free rate, EMR, and two mimicking portfolio returns: SMB (small

minus big) and HML (high minus low).5

Using these three pricing factors, FF (1996) succeed in resolving most of the well-known

CAPM anomalies except short-term return continuation. FF (1996) cannot explain both

continuation and reversal at the same time, because they find that the exposure patterns of losers

versus winners is the same whether past performance is defined as short- or long-term. That is,

                                                

5 Although FF(1995) demonstrate that both firm size and book-to-market, which are used to construct SMB and

HML respectively, have strong empirical links to firms’ economic fundamentals (profitability), controversy remains

over whether SMB and HML are really risk-based, rational asset pricing factors (see, e.g., Ferson and Harvey,

1999). This paper does not intend to join the debate on the rationality issue. However, since the paper has a clear

focus within the framework of the FF model, I preserve the consistency of FF’s logic throughout the paper.
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relative to short-term winners, short-term losers on average load more on SMB as well as on

HML, which is the same pattern as observed for long-term losers relative to long-term winners.

As a result, in the FF tests, the high loadings for short-term losers incorrectly predict the same

pattern as for long-term losers, namely reversal rather than continuation.

FF obtain the above results in an unconditional setting. However, there is no strong a

priori reason to believe that prices of risks and degrees of risks stay constant through time. In an

attempt to explain the unresolved cross-sectional patterns of return continuation, I investigate

whether it helps to take market-wide conditioning information into consideration. The

conditional version of the FF three-factor asset pricing model can be written as

E[ri,t+1|Ωt] = βmt E[EMRt+1|Ωt] + βst E[SMBt+1|Ωt] + βht E [HMLt+1|Ωt] (1)

where ri,t+1 is the return of asset i from time t to t+1 in excess of a risk-free rate; EMRt+1 is the

return on the market portfolio in excess of a risk-free rate; SMBt+1 is the mimicking portfolio

return used to capture the size effect; HMLt+1 is the mimicking portfolio return to explain

relative distress; Ωt is the information set that investors rely upon to balance their portfolios

through time; E[.|Ωt] is the expectation conditioned on information at time t; βmt is the market

risk; βst is the state risk arising from investors’ special hedging concerns associated with size;

and βht is the risk arising from special hedging concerns related to relative distress. In a

conditional setting, risk measures as well as risk premiums are supposed to vary through time;

and time-varying risks are explicitly specified in Section 4.

Alternatively, the conditional version of the FF three-factor pricing model can take the

following form:
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E[ri,t+1|Ωt]=λmt cov[ri,t+1,EMRt+1|Ωt] + λst cov[ri,t+1, SMBt+1|Ωt] + λht cov[ri,t+1,HMLt+1|Ωt] (2)

where λmt is the price of the market risk (reward to covariability with the market); λst is the price

of the state risk that is associated with size (reward to covariability with SMBt+1); and λht is the

price of the state risk that is associated with relative distress (reward to covariability with

HMLt+1). In a conditional setting, the covariances and prices of risks are supposed to vary

through time; and conditional prices of risks are explicitly specified in Section 5.

4. Exploring conditional risk exposures

One potential reason that the FF tests fail to accommodate short-term momentum may be that

assets’ exposures to the SMB and HML factors are indeed time-varying and that time-variation

characteristics of different assets, which are missed by the unconditional FF tests, may play an

important role in asset pricing. In this section, I try to model explicitly conditional risk loadings

and show evidence that they are time-varying indeed and that different assets have different

time-variation characteristics of risks.

Consistent with the conditional version of the FF model in (1), I postulate that the risk

loadings are linear functions of a set of conditioning information and run a conditional

regression as follows: 6

ri,t+1 = α + Ztββββm EMRt+1 + Ztββββs SMBt+1 + Ztββββh HMLt+1 + ηi,t+1 (3)

                                                

6 This is similar to Ferson and Harvey (1999). Conditional regressions have become widely used in empirical

finance. For example, Ferson and Schadt (1996) use them to re-evaluate fund performance.
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where ri,t+1  is the excess return (total return) on portfolio (arbitraging portfolio) i and  EMRt+1 is

the excess return on market; SMBt+1 and HMLt+1 are returns on the mimicking portfolios that

reflect premiums on size effect and relative distress effect, respectively; Zt is a row vector of the

six instruments including a constant; and α, ββββm, ββββs, and ββββh are constant weights to be estimated.

Thus, Ztββββm , Ztββββs, and Ztββββh are conditional risk loadings on EMR, SMB, and HML, respectively.

The intercept, α, is usually interpreted as the abnormal return.

With little loss of generality, I focus on four extreme portfolios: the worst and best

performers in ranking Past2-12 (denoted as SL and SW, respectively), and the worst and best

performers in ranking Past13-60 (LL and LW, respectively). I am particularly curious as to

whether the risk exposures for these portfolios vary through time in relation with conditioning

information, whether and how conditional risk exposures for different assets behave differently,

and whether conditioning information helps the model to explain return momentum and reversal.

In Table 3, each of ββββm, ββββs, and ββββh shows the weights on Zt in the corresponding exposures.

Using heteroskedasticity-consistent Wald tests, I first test the null hypothesis that, in each vector,

the slopes (excluding the constant term) are jointly zero. For the market risks, the Wald test

rejects the hypothesis of constant exposure only in one case, namely for LL (χ2 statistic = 15.23,

p-value=0.01). In contrast, there is overwhelming evidence that the exposures to SMB and HML

tend to be time-varying; only the constant SMB risk for LW is not rejected (χ2 statistic = 5.29, p-

value=0.38) at the 10% level.

Second, if the FF three-factor model is correctly specified, abnormal returns should be

close to zero. However, this is not the case in view of the evidence from the conditional

regression with linear risk exposures in the instruments. The estimates of α, are in general
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significantly different from zero, with LL being the only portfolio with an insignificant α value

(-0.33, t-value=-1.49).

The less-than-perfect performance of the linear-exposure model, however, does not mean

that a conditional regression model is useless. It is a long tradition that researchers use the

market model to control for the market risk for an asset or portfolio regardless of whether this

asset or portfolio is over- or under-priced by this one-factor model. In other words, it is widely

accepted that the risk loading suggested by a return generating process bears useful information

about the risk for the asset or portfolio in question. In the same spirit, I simply use the linear-

exposure model to discover the prime characteristics of the conditional risk exposures even

though it is known that the linear model does not capture the whole picture.

Table 4 reports some key aspects of conditional risk exposures. In Panel A, the time-

series means of conditional SMB and HML risks for momentum and reversal portfolios show

similar risk patterns found in the unconditional FF (1996) tests, that is, regardless of being short-

or long-term, losers load more on SMB and HML than winners do.7 Such risk patterns are also

observed in terms of other location measures reported in Panel A (such as median, the first and

third quartile, minimal and maximal values).

In Panel B of Table 4, the time-varying SMB risks for both short- and long-term winners

show a pattern of some long memory with significant autocorrelations hovering at a similar level

in each case up to at least lag 6. In contrast, positive autocorrelations of the SMB risks for both

short- and long-term losers tend to die out after the first lag. In short, there is a strong parallel

                                                

7 Short-term (long-term) losers show an average SMB risk of 1.67 (1.74) and an average HML risk of 0.55 (0.94)

while short-term (long-term) winners have, on average, a SMB risk of 1.04 (0.71) and a HML risk of 0.11 (-0.19).
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between return momentum and reversal patterns regarding their SMB risks. However, close

scrutiny tends to indicate that the HML risk for LL behaves like LW, unlike their short-term

counterparts.

Further evidence that apparently breaks the similar risk patterns between return

momentum and reversal comes from Panel C of Table 4. Exposures to the two mimicking

portfolio factors for short- and long-term pairs finally exhibit a clear asymmetry: for the short-

term winners and losers, the SMB risks as well as the HML risks are significantly negatively

cross-correlated (corrrelation = -0.22 and -0.47, respectively), but these risks for the long-term

winners and losers are significantly positively cross-correlated (correlation = 0.30 and 0.46,

respectively). Thus, the different time-variations in the SMB and HML risks are the empirical

fact that clearly distinguishes the short-term winners/losers from the long-term winners/losers.

As a result, it becomes possible that short-term performance is characterized by

momentum while long-term performance exhibits reversal. In light of this, the failure of the

unconditional asset pricing tests in FF (1996) to accommodate for the opposite return patterns of

continuation and reversal with the same unconditional FF three factors now appears less

puzzling.

Still, the conditional regression model fails to price assets correctly. However, this failure

in itself does not warrant rejection of the role of conditioning information. First and foremost,

the conditional regression in (3) imposes a very specific (i.e., linear) structure on the exposures.

Second, each portfolio equation is tested in isolation, without cross-sectional constraints. For

this reason, FF (1996) base their final conclusions on the multivariate test by GRS (1989). In the

same spirit, the next section employs parsimonious conditional cross-sectional pricing tests,

which can be viewed as a conditional analogue to the static GRS test.
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5. Conditional cross-sectional asset pricing tests

I first use the method by Dumas and Solnik (1995) and then the method by Harvey (1989) to

check for robustness. Both methods need just one-shot estimation, which is significantly

different from the two-pass approach used in Ferson and Harvey (1999). Also, both methods

expand the test portfolios into a much larger strategy space based on conditioning information.

5.1. Econometric test using Dumas-Solnik’s approach

Dumas and Solnik (1995) test conditional international asset pricing models with a world market

factor and some foreign exchange risk factors. From, for instance, Ross (1976) or Hansen and

Jagannathan (1991), if the law of one price prevails, there will be at least some random variable

Mt+1 such that

 E[Mt+1(1+ρt)|Ωt] = 1, (4a)

E[Mt+1ri,t+1|Ωt] = 0 (4b)

where Mt+1 is a stochastic discount factor or a pricing kernel, which can be taken, as a solution,

to be equal to the representative investors’ intertemporal marginal rate of substitution; ρt is a

conditional risk-free rate; and ri,t+1 is the excess return on a portfolio or the total return on an

arbitrage portfolio. The no-arbitrage (moment) conditions in (4a) and (4b) say that there is a

positive pricing kernel Mt+1 that explains the cross-section of asset returns.

Of course, (4a) and (4b) are empty statements as long as the pricing kernel remains

unspecified. Assuming the conditional FF pricing model in (2), the pricing kernel becomes

]1[
1

1
11101 ++++ −−−−

+
= thttsttmtt

t
t HMLSMBEMRM λλλλ

ρ
 (5)
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The equivalence of the pricing kernel in (5) to the original pricing model in (2) can be

easily verified by substituting (5) into (4b) and using (4a). Note that λot is not a price of risk;

rather, it is an intercept that is needed to satisfy (4a):

 λot = –λmt E[EMRt+1|Ωt] –λst E[SMBt+1|Ωt] − λht E[HMLt+1|Ωt] .

To test the moment conditions in (4a) and (4b) with the pricing kernel specified by (5), I

rely on one auxiliary assumption: the time-varying prices of risks and the intercept in the pricing

kernel can be expressed by linear combinations of conditioning information Zt, namely,

λot = φφφφ0'Zt, λmt = φφφφm'Zt, λst = φφφφs'Zt, and λht = φφφφh'Zt, (6)

where φφφφ0, φφφφm, φφφφs and φφφφh, are vectors of constant loadings. It is worth mentioning that, while the

prices of risks are specified explicitly in (6), no functional form for the risks themselves is

imposed. This implies that covariances are allowed to vary freely through time. The advantage is

parsimony, but the disadvantage is that such asset pricing tests cannot tell us anything new

(beyond what I find in Section 4) as to how risks are related to the instruments Zt.

With the assumption that the prices of risks are linearly related to a limited set of

information variables, I can test whether the moment restrictions in (4a) and (4b) are satisfied.

Let ut+1 denote the deviation in (4a), i.e.,

ut+1 = 1 − Mt+1 (1 + ρt)

= φφφφ0'Zt + φφφφm'Zt EMRt+1 + φφφφs'Zt SMBt+1 + φφφφh'Zt HMLt+1 . (7)

Let hi,t+1 denote the scaled pricing error in (4b) for asset i. Taking into account (7) gives
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Taken together, (7) and (8) form an econometric system for testing conditional asset

pricing restrictions:

E[εεεεt+1 |Zt]= E[ut+1, ht+1 |Zt] = 0 . (9)

I use Hansen’s (1982) GMM to test and estimate system (9). More precisely, I use Newey

and West’s (1987a) estimator to account for up-to-lag-3 autocorrelation in pricing errors in

forming the weighting matrix W and the iterated GMM advocated by Ferson and Foerster

(1994).8 The J-test of the over-identifying restrictions of Hansen (1982) is a χ2 statistic that

provides a metric of goodness-of-fit for the model.

5.2. Conditional pricing tests on various sets of deciles

I use a GMM goodness-of-fit statistic to test whether the way of conditioning model (2) on

information using the system in (7) and (8) can be rejected statistically.9 Table 5 presents the test

results on the various decile portfolios, where each set is formed on the basis of a specific

definition of past returns as shown in Table 1, Panel A.

                                                

8 Hansen and Singleton (1982) originally suggest a (still widely used) two-step approach (2-stage GMM). However,

Ferson and Foerster (1994) find that an iterated GMM, which repeatedly updates W until the procedure converges

according to some prespecified criterion, has better finite sample properties.

9 Each pricing test uses K  = 11 moment conditions (ten decile portfolios and one pricing kernel) and l = 6

instruments (including a constant). The number of parameters P is equal to 24 (three factors plus an intercept, each

having loadings on six instruments). Therefore, the degrees of freedom of the χ2 statistic for the J-test are equal to

42 ( = K x l – P = 11 x 6 – 24).
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Panel A of Table 5 describes the results for ranking Past2-12, which exhibits short-term

return continuation. Recall that the unconditional version of the FF three-factor pricing model

fails to accommodate this phenomenon. In contrast, the conditional tests do not reject the

hypothesis of multifactor explanation of return continuation: the J-test for goodness-of-fit

produces a χ2 statistic of 38.29 with a p-value of 0.63. Thus, the null hypothesis of zero

deviations in the no-arbitrage (moment) conditions cannot be rejected. I also compute three

heteroskedasticity-consistent Wald-test statistics, one for each of the hypotheses that a particular

price of risk is zero. As prices of risks are assumed to be linearly related to the instruments

including a constant, the null hypothesis in each Wald test is that the loadings for these six

instrumental variables are jointly zero.10 The resulting χ2 statistics for prices per unit of

covariance risk to, respectively, the market, SMB, and HML are 27.74, 40.34, and 31.34, all of

which have p-values equal to 0.00. In summary, test results in Table 5, Panel A show that each

of the conditional FF three factors seems priced and provide no evidence that a momentum

factor is needed next to these factors.

Panel B in Table 5 summarizes the tests for ranking Past13-60, the one that produces

long-term return reversal. Consistent with the unconditional test results in FF (1996), the results

here confirm that long-term return reversal is also compatible with the conditional model with a

strategy space enlarged by the conditioning information. The χ2 statistic for goodness-of-fit,

28.08, has a p-value of 0.95. In the Wald tests of the hypothesis that the price of risk is zero, the

                                                

10 Results from the LR test (not reported) are consistent with those from the Wald test. The LR test, i.e., the D-test

described by Newey and West (1987b), is used in Harvey’s approach later in this paper.
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χ2 statistics are 36.01, 65.64, and 59.05 respectively, and each of the p-values is again equal to

0.00. In other words, the hypothesis that each of the three factors is not priced is rejected.11

Note that the estimation reported in Table 5 is calculated separately for each set of decile

portfolios, because Hansen’s GMM needs a manageably small system. Thus, in the above tests

the estimated prices of risks depend on which set of portfolios is used for estimation. For

example, the coefficient on EMR(-1) for φm is significantly positive (0.018; t-value=2.28) in

Panel A of Table 5, while it is significantly negative (-0.013; t-value=-2.36) in Panel B.  Thus,

from the above tests it is by no means obvious yet that there actually exists one set of prices of

risks that can simultaneously price both continuation portfolios (as in Panel A) and reversal

portfolios (Panel B). This issue is addressed in the next two subsections.

To test whether one set of prices of risks can price, simultaneously, portfolios that exhibit

both reversal and momentum, in the remainder of this section I focus on the pooled set of ten

portfolios, where five portfolios exhibit continuation and the other five reversal. To this data set

I will apply the Dumas-Solnik tests. However, I also adopt an alternative test method, originated

by Harvey (1989), to check robustness. Section 5.3 describes the alternative test, while Section

5.4 presents the test results.

5.3. Econometric test using Harvey’s approach

To test a conditional CAPM, Harvey (1989) proposes a method that allows for time-varying

covariances between excess returns and the market excess return. Harvey’s method can be easily

extended for the conditional multifactor model in (2) as follows:

                                                

11 I have obtained similar results with test portfolios based on longer ranking periods, namely, Past2-24, Past2-36,

Past2-48, and Past2-60, respectively.
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µµµµt = Et[(rt+1 – µµµµt)( ft+1– δδδδt)']λλλλt, (10)

where rt+1 is the vector of excess returns on test portfolios; Et[.]    is the expectation conditioned

on the information available at time t; µµµµt = Et[rt+1], the vector of conditional expected excess

returns; ft+1 is a vector of FF three factors; δδδδt = Et[ft+1], the vector of conditional mean of the FF

three factors; and λλλλt is the vector of prices of risks. The model is further parameterized by

assuming µµµµt = CZt and δδδδt = DZt, where D and C are matrices of coefficients to be estimated.

Harvey assumes that λλλλt is constant and estimates (10) by examining the moment conditions:

Et[rt+1 – CZt] = 0, (11a)

Et[ ft+1 – DZt] = 0, (11b)

Et[ rt+1 – (rt+1 – CZt) ( ft+1– DZt)'] λ λ λ λt=0. (11c)

With no significant loss of generality, He, Kan, Ng, and Zhang (1996) drop the term CZt,

to obtain a more parsimonious empirical framework. They also allow prices of risks to vary

through time by specifying λλλλt = AZt, where

A=(φm, φs, φh)', (12)

and the φ’s are defined the same way as their counterparts in (6). The model is tested

parsimoniously by examining the moment conditions:

Et[ ft+1 – DZt] = 0, (13a)

Et[ rt+1 – rt+1 ( ft+1– DZt)'AZt] = 0. (13b)

I test (13a) and (13b) using, again, Hansen’s GMM (see e.g., He, Ng, and Wu, 1997).

5.4. Conditional pricing tests on pooled portfolios of momentum and reversal

If the conditional FF three factor model is true, the same set of prices of risks should explain
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both return momentum and reversal. To have a sharper test, I pool two sets of quintile portfolios,

one set being sorted to exhibit return momentum and the other being formed to show reversal.

Table 6 reports the results of the tests on this mixed sample.

Panel A in Table 6 describes results from Dumas-Solnik’s approach, while Panel B

summarizes the findings using Harvey’s (1989) approach. The J-test for goodness-of-fit

produces χ2 statistics of 49.38 (Panel A) and 46.93 (Panel B), with upper-tail p-values of 0.20

and 0.28, respectively. Thus, the null hypothesis of zero deviations in the moment conditions in

either (9) or (13) is not rejected.

To test whether the three FF factors are priced and whether prices of risks are time-

varying, I compute the heteroskedasticity-consistent Wald-test statistics in Dumas-Solnik’s

approach and the LR test statistics in Harvey’s approach.12 As the prices of risks are assumed to

be linearly related to the instruments, the null hypothesis in each Wald test in Table 6, Panel A,

is that the loadings for these six instrumental variables are jointly zero. The resulting χ2 statistics

for prices of the exposures to, respectively, the market, SMB, and HML are 59.22, 58.20, and

43.95, all of which have p-values equal to 0.00. Similarly, in Panel B, for each of the FF three

factors the LR tests reject the exclusion of the loadings for all six instrumental variables. The

resulting χ2 statistics for prices of exposures to, respectively, the market, SMB, and HML are

44.90, 39.75, and 64.24, all of which have p-values equal to 0.00. The results confirm that the

FF three factors are priced.

                                                

12  The LR test is called for here because Harvey’s moment conditions consist of non-linear functions.
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The Wald tests and LR tests also indicate that each of the FF three prices of risks is time-

varying. In Table 6, Panel A, the Wald tests for each of the three prices of risks reject the

exclusion of the loadings for all five time-varying instruments. The χ2 statistics are 39.12, 54.25,

and 32.93 respectively (p-values are all equal to 0.00). This holds equally true in Panel B, where

the counterpart χ2 statistics are 61.05, 36.82, and 35.17 respectively (p-values are all equal to

0.00). The consistent test results from two different test methods demonstrate that not only FF’s

three factors are priced, but also that the prices of these factor risks vary through time in

response to market-wide information.

The close parallel between the two alternative methods regarding the conclusions also

survives a close examination of the parameter estimation. Noticeably, all the significant

coefficients in Table 6, Panel A, have the same sign as their counterparts in Panel B. As a matter

of fact, the correlation coefficient between each price of risk in Panel A and its counterpart in

Panel B is above 0.95.

6. Conclusion

This paper shows that conditioning market-wide information plays an important role in asset

pricing, in particular, to capture return momentum. When I explicitly model the exposures to

FF’s three factors using a conditional regression, where the exposures are assumed to be linear in

the instruments, I find that the risk exposures, particularly to SMB and HML, for the best

winners and the worst losers tend to be time varying. Moreover, in contrast to their similar

unconditional risk patterns between return momentum and reversal, these two opposite kinds of

portfolios do have different conditional risk characteristics. Results show that, like the SMB

risks, the HML risks for the short-term winners and losers are significantly negatively cross-
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correlated while the HML risks for long-term winners and losers are significantly positively

cross-correlated. This evidence supports the view that incorporating conditioning information

into an asset-pricing model is a crucial step to capture both momentum and reversal return

patterns.

The conditional linear-exposure FF regression model seems, however, to remain

misspecified. Conversely, when the linearity assumption is relaxed and cross-sectional

restrictions are imposed, the conditional cross-sectional asset pricing tests, which allow more

reliable conclusions with regard to the specification of the model, tell a different story. The

results from two well-established test methods, which can be viewed as alternative conditional

analogues to the static GRS multivariate test, indicate that conditioning information does help

the FF model to capture the cross-sectional patterns of return continuation as well as return

reversal.

The work of this paper is closely related to Ferson and Harvey (1999). Although they

reject the FF three-factor model in their two-pass pricing tests, using an additional pricing factor

that is based purely on conditioning information, yet their pricing factor alone cannot explain the

cross section of asset returns. Thus, they have not found a better alternative to the less-than-

perfect FF model. However, more importantly, they show that their conditioning-information-

based pricing factor can significantly explain the cross-sectional patterns in the pricing errors

missed by the FF model. This paper, building on Ferson and Harvey’s work, demonstrates that

incorporating conditioning information into asset pricing can capture return momentum and

reversal without sacrificing the insights of existing unconditional models.
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Table 1:

Average Post-Formation Excess Returns of Decile and Quintile Portfolios Formed Monthly
Based on Past Returns

At the beginning of each month t+1, decile portfolios (Panel A) or quintile portfolios (Panel B) are formed on the
continuously compounded returns between t+1− x and t+1−y of all NYSE and AMEX U.S. common stocks. For
example, the label Past2-12 (i.e., from t-11 to t-1 in general) (Panel A) or Past2-12q (Panel B) means that the stocks
are allocated to the decile portfolios or quintile portfolios for July 1963 based on their continuously compounded
returns for July 1962 through May 1963. Decile 1 (Panel A) or quintile 1 (Panel B) contains the stocks with the
lowest continuously compounded past returns (the worst past losers). The portfolios are rebalanced monthly, and
equal-weight simple returns in excess of the holding period return on the one-month T-bill are calculated for July
1963 through December 1995. The averages of these excess returns (in percent) and the t-values of the average are
presented in the table for the sample period (390 months).

Panel A
Portfolio 1 2 3 4 5 6 7 8 9 10
 Excess Return of Decile Porfolios
Past2-12 -0.02 0.46 0.54 0.68 0.74 0.79 0.91 1.04 1.26 1.46
Past13-60 1.41 0.95 0.77 0.71 0.81 0.75 0.72 0.67 0.56 0.35

t -value of Mean Excess Return
Past2-12 -0.05 1.39 1.77 2.37 2.69 2.93 3.35 3.78 4.21 4.23
Past13-60 3.11 2.90 2.65 2.59 3.12 2.96 2.85 2.59 2.03 1.11

Panel B
Excess Return of Quintile Portfolios t -value of Mean Excess Return

Portfolio 1 2 3 4 5 1 2 3 4 5
Past2-12q 0.20 0.62 0.81 1.01 1.38 0.52 2.09 2.97 3.68 4.32
Past13-60q 1.14 0.70 0.77 0.64 0.47 2.99 2.48 3.01 2.54 1.60
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Table 2:

Summary Statistics for Instrumental Variables

EMR(-1) is the lagged (NYSE, AMEX, and Nasdaq) value-weighted market excess return (i.e., MR-RF lagged by one
month, from Eugene Fama). TB1 denotes the one-month U.S. T-bill rate (Fama file in CRSP). TB31 stands for the
yield spread between the lagged three- and one-month U.S. T-bills (Fama file). JUNK represents the yield spread
between Corporate Baa- and Aaa-bonds (Federal Reserve Bulletin). DIV(-1) is defined as the one-month lagged
spread between a dividend yield and the one-month T-bill holding period return, where the dividend yield is defined
as the 12-month backward moving average of dividends divided by the current end-of-period index price, and the
dividend yield is computed from the monthly S&P stock returns with and without dividends (Ibbotson Associates).
The table contains the mean and standard deviations of monthly excess returns or yields (in percent) on the five
instrumental variables, the pair-wise correlations and individual autocorrelation of these instrumental variables for
July 1963 through December 1995 (390 months).

Panel A: Instruments
Mean Std.Div. Pairwise Correlations

EMR (-1) 0.48 4.34 1.00  
TB1 0.51 0.22 -0.12 1.00  
TB31 0.04 0.04 -0.01 0.14 1.00  
JUNK 1.06 0.47 0.14 0.54 0.32 1.00  
DIV (-1) -0.21 0.17 0.10 -0.89 -0.21 -0.48 1.00

Panel B: Autocorrelations
ρρρρ1 ρρρρ2 ρρρρ3 ρρρρ6 ρρρρ9 ρρρρ12 ρρρρ24 ρρρρ36

EMR (-1) 0.05 -0.04 0.00 -0.06 -0.02 0.02 -0.01 -0.03
TB1 0.95 0.91 0.87 0.81 0.76 0.69 0.40 0.21
TB31 0.36 0.24 0.12 0.21 0.17 0.40 0.23 0.05
JUNK 0.97 0.92 0.89 0.81 0.73 0.64 0.40 0.19
DIV (-1) 0.91 0.84 0.80 0.70 0.63 0.53 0.22 0.02
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Table 3:

Conditional Regression Estimation of Risk Exposures for Winners and Losers

The table presents the estimation results for four extreme winners and losers from Past2-12 and Past13-60 defined in
Table 1, namely, the worst short-term losers (SL), the best short-term winners (SW), the worst long-term losers
(LL), and the best long-term winners (LW), using the following conditional regression:

ri,t+1 = α + Ztββββm EMRt+1 + Ztββββs SMBt+1 + Ztββββh HMLt+1 + η i,t+1

where ri,t+1 is the excess return (total return) on portfolio (arbitraging portfolio) i (i = SL, SW, LL, LW) and is
regressed on the FF three factors: EMRt+1, SMBt+1, and HMLt+1. The regression slopes are linear in instruments Zt (a
row vector) that include a constant term, EMR(-1), TB1, TB31, JUNK and DIV(-1) (see definitions in Table 2). α is
the regression intercept while ββββm, ββββs, and ββββh are vectors of constant weights on Zt. That a risk loading (slope) is not
linearly related to the last five time-varying instruments in Zt (excluding the constant term) is tested using the Wald
test under the hypothesis that the last five coefficients of individual vectors of ββββm , ββββs, or ββββh are jointly zero. The χ2

statistic has the degrees of freedom equal to five. The p-value is the probability that a χ2 variate exceeds the sample
value of the statistic. Estimates and t-values of α, ββββm, ββββs, and ββββh, the χ2 statistics with their p-values, adjusted R2s and
the Durbin-Watson statistics are reported. The sample size is 390 months (7/1963−12/1995).

SL SW LL LW SL SW LL LW
αααα t ( αααα)

-1.42 0.54 -0.33 -0.27 -7.13 4.15 -1.49 -3.21
ββββm t ( ββββm )

CONST 0.93 1.05 0.69 1.20 4.41 7.51 2.54 11.48
EMR(-1) 0.00 -0.01 0.00 0.00 0.25 -0.98 0.23 0.41
TB1 -0.53 0.49 0.09 0.06 -0.88 1.18 0.13 0.23
TB31 1.41 0.10 1.55 0.23 0.74 0.10 0.75 0.42
JUNK 0.26 -0.04 0.43 -0.10 1.65 -0.32 2.74 -1.29
DIV(-1) -0.53 0.80 0.92 0.05 -0.72 1.70 1.16 0.16

χχχχ2(5) p -value
Wald test 9.84 6.33 15.23 4.16 0.08 0.28 0.01 0.53

ββββs t ( ββββs )
CONST 2.42 1.21 2.40 0.66 5.81 5.01 3.26 4.91
EMR(-1) 0.04 0.03 0.07 0.01 1.31 1.94 1.31 1.33
TB1 -3.63 1.24 -2.77 0.36 -3.01 1.46 -1.58 0.89
TB31 -5.35 0.93 -4.29 -0.02 -1.67 0.52 -1.32 -0.02
JUNK 0.41 -0.42 0.27 -0.10 1.34 -2.36 0.96 -0.82
DIV(-1) -4.02 1.89 -2.88 0.12 -2.85 2.17 -1.50 0.25
 χχχχ2(5) p -value
Wald test 30.87 33.74 34.61 5.29 0.00 0.00 0.00 0.38

ββββh t ( ββββh )
CONST 0.69 0.28 1.54 -0.04 2.27 1.43 3.25 -0.32
EMR(-1) 0.03 -0.02 0.04 0.00 1.08 -1.19 0.89 0.43
TB1 -0.60 -0.02 -2.25 0.27 -0.64 -0.02 -2.06 0.69
TB31 5.35 -3.01 1.91 1.72 2.35 -1.81 0.91 1.96
JUNK -0.15 0.20 0.25 -0.19 -0.47 0.80 0.89 -1.47
DIV(-1) -0.40 1.16 -0.85 0.70 -0.35 1.41 -0.61 1.43
 χχχχ2(5) p -value
Wald test 11.34 25.42 23.56 14.06 0.05 0.00 0.00 0.02
Adj-R2 0.79 0.88 0.78 0.94
DW 1.97 1.96 1.81 1.69



Conditional Multifactor Analysis of Momentum, X.P. Wu

32

Table 4:

Time Path Patterns of the Conditional Risk Exposures for Winners and Losers

The table reports the time-series statistics of conditional risk exposures for four extreme winners and losers from
Past2-12 and Past13-60 defined in Table 1, namely the worst short-term losers (SL), the best short-term winners
(SW), the worst long-term losers (LL), and the best long-term winners (LW). The conditional risk loadings, Ztββββm ,

Ztββββs, Ztββββh represent the market risk, the SMB risk and the HML risk, respectively. The conditional risks are linear in
the instrumental variables Zt (a row vector) that include a constant term, EMR(-1), TB1, TB31, JUNK and DIV(-1)
(see definitions in Table 2), where the corresponding constant weights ββββm , ββββs, and ββββh are estimated from the
conditional regression. Panel A presents some summary statistics of the conditional risks. Panel B exhibits
autocorrelations of conditional risks. Panel C shows the cross-correlations of each of the three risk exposures
between SL, SW, LL, and LW. The sample size is 390 months (7/1963−12/1995).

Market Risk SMB Risk HML Risk
SL SW LL LW SL SW LL LW SL SW LL LW

Panel A: Conditional Risks
Mean 1.11 1.09 1.06 1.12 1.67 1.04 1.74 0.71 0.55 0.11 0.94 -0.19
St.Dev 0.15 0.08 0.21 0.04 0.41 0.27 0.44 0.07 0.26 0.23 0.39 0.13
Median 1.08 1.10 1.04 1.13 1.70 1.07 1.76 0.71 0.53 0.17 1.00 -0.18
q1 1.01 1.05 0.90 1.10 1.44 0.90 1.48 0.67 0.41 -0.01 0.72 -0.26
q3 1.19 1.14 1.17 1.15 1.92 1.22 2.03 0.75 0.65 0.27 1.19 -0.10
Min 0.76 0.69 0.64 0.99 0.27 -0.05 0.32 0.35 -0.31 -0.91 -0.71 -0.74
Max 1.82 1.35 1.96 1.19 3.26 1.80 3.08 0.98 1.80 0.53 2.08 0.19

Panel B: Autocorrelation
ρρρρ1111 0.70 0.36 0.85 0.87 0.40 0.59 0.28 0.24 0.25 0.61 0.62 0.75
ρρρρ2222 0.63 0.21 0.74 0.82 0.18 0.54 0.10 0.25 0.12 0.56 0.49 0.62
ρρρρ3333 0.58 0.26 0.67 0.79 0.20 0.52 0.14 0.24 0.02 0.53 0.45 0.56
ρρρρ6666 0.57 0.22 0.47 0.73 0.14 0.55 0.06 0.25 0.11 0.46 0.38 0.55
ρρρρ12121212 0.49 0.24 0.17 0.59 0.15 0.46 0.10 0.16 0.35 0.46 0.30 0.53
ρρρρ24242424 0.25 0.11 0.03 0.28  0.06 0.21 0.03 -0.05 0.23 0.11 0.12 0.31
ρρρρ36363636 0.08 -0.04 -0.04 0.06  -0.05 0.01 -0.05 -0.14 0.10 -0.05 0.06 0.06

Panel C: Cross-correlation of Risks between Portfolios
SL 1.00   1.00 1.00  
SW -0.61 1.00   -0.22 1.00 -0.47 1.00  
LL 0.74 -0.05 1.00  0.93 0.10 1.00 0.69 0.17 1.00
LW -0.70 0.28 -0.62 1.00 0.05 0.42 0.30 1.00 0.54 0.25 0.46 1.00



Conditional Multifactor Analysis of Momentum, X.P. Wu

33

Table 5:

Conditional Cross-sectional Pricing Tests on Deciles Formed on Past Returns

The table presents the GMM tests on the following orthogonality conditions using each of the decile portfolios
formed on various past returns defined in Table 1, Panel A:

E[ ut+1 ⊗  Zt ] = 0,

 E[(rt+1 − rt+1 ut+1 ) ⊗  Zt] = 0,

where ut+1 = φφφφ0'Zt + φφφφm'Zt EMRt+1 + φφφφs'Zt SMBt+1 + φφφφh'Zt HMLt+1, with the φφφφ's being vectors of constant weights on the
instruments Zt that include a constant term. rt+1 is the excess returns on decile portfolios. The J-test is the test on over-
identifying restrictions for goodness-of-fit, and is distributed χ2 with the degrees of freedom equal to the number of
orthogonality conditions [(10 assets and one pricing kernel) times six instruments = 66] minus the number of
parameters [(three pricing factors and one conditional intercept in the pricing kernel) times six instruments = 24], i.e.,
42. That a pricing factor is not priced is tested using the heteroskedasticity-consistent Wald test under the null
hypothesis that the six weights in a φφφφ vector are jointly zero. The p-value is the probability that a χ2 variate exceeds the
sample value of the statistic. Panel A and Panel B report the estimates and t-values of φφφφ0, φφφφm, φφφφs and φφφφh from the pricing
test on decile portfolios (Past2-12) and (Past13-60) respectively. The sample size is 390 months (7/1963 − 12/1995).

Panel A: Estimation with Short-Term Return Continuation Deciles (Past2-12)
Instrument φφφφ0000 φφφφm φφφφs φφφφh t -value
CONST 0.151 0.228 -0.048 -0.666 0.63 2.10 -0.27 -2.91
EMR (-1) 0.020 0.018 0.035 0.059 0.89 2.28 3.90 3.49
TB 1 -0.780 -0.276 0.907 4.014 -0.98 -0.80 1.49 4.27
TB 31 2.515 -3.349 2.012 -2.539 1.33 -3.26 1.47 -1.72
JUNK -0.153 0.018 -0.210 -0.766 -0.80 0.24 -2.01 -3.41
DIV (-1) -0.613 -0.605 2.131 3.028 -0.71 -1.41 3.20 2.82
Wald Test J -Test
χχχχ2(6) 27.74 40.34 31.34 χχχχ2(42) 38.29   
p -value 0.00 0.00 0.00 p -value 0.63

Panel B: Estimation with Long-Term Return Reversal Deciles (Past13-60)
Instrument φφφφ0000 φφφφm φφφφs φφφφh t -value
CONST 0.342 0.139 -0.486 0.148 1.56 1.36 -3.60 0.79
EMR (-1) -0.028 -0.013 0.047 -0.003 -1.41 -2.36 6.07 -0.29
TB 1 -0.890 -0.587 1.669 -0.120 -1.19 -1.97 3.52 -0.24
TB 31 -12.549 -0.857 10.480 5.940 -5.14 -1.16 5.88 5.36
JUNK -0.185 0.155 -0.294 -0.147 -1.17 2.65 -2.84 -1.60
DIV (-1) -1.701 -0.503 1.799 -0.266 -2.12 -1.44 3.24 -0.46
Wald Test  J -Test  
χχχχ2(6) 36.01 65.64 59.05 χχχχ2(42) 28.08   
p -value 0.00 0.00 0.00 p -value 0.95
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Table 6:

Conditional Cross-sectional Pricing Tests on Pooled Two Sets of Quintile Portfolios That
Represent Return Momentum and Reversal Patterns Respectively

The table presents the GMM tests using both Dumas-Solnik’s approach (Panel A) and Harvey’s approach (Panel B)
on pooled two sets of quintile portfolios described in Table 1 (Panel B). The empirical framework in Dumas-
Solnik’s approach is shown in Table 5. Harvey’s approach examines the following orthogonality conditions:

E[( ft+1 − DZt) ⊗  Zt ] = 0,

E[ rt+1 − rt+1 ( ft+1− DZt)'AZt) ⊗  Zt ] = 0

where rt+1 are the excess returns on the pooled two quintile portfolios, D and A are coefficient matrices, A = (φφφφm, φφφφs

,φφφφh)'  (see definitions of similar notations in Table 5). The J-test is the test on over-identifying restrictions for
goodness-of-fit, and is distributed χ2 with the degrees of freedom equal to the number of orthogonality conditions
[(10 test assets and three factors) times six instruments = 78] minus the number of parameters [(three factors and
three reward to risk ratios) times six instruments = 36], i.e., 42. The Wald test (Panel A) and the LR test (Panel B)
are used to test the exclusion of the six weights (including the constant) or five weights in a φφφφ ector are jointly zero.
The sample size is 390 months (7/1963 − 12/1995).

Panel A: Dumas-Solnik's Approach
Instrument φφφφ0000 φφφφm φφφφs φφφφh t -value
CONST -0.247 0.143 0.119 0.587 -1.69 1.84 0.93 3.84
EMR (-1) -0.011 -0.026 0.033 -0.047 -0.70 -5.29 5.14 -5.26
TB 1 0.256 -0.552 0.344 -1.071 0.53 -2.55 0.95 -2.44
TB 31 -3.563 0.138 4.442 0.158 -2.01 0.23 4.22 0.18
JUNK -0.132 0.084 -0.235 -0.061 -0.99 1.83 -3.14 -0.71
DIV (-1) -0.552 -0.512 0.946 -0.737 -0.95 -1.93 2.22 -1.40
Wald Test
χχχχ2(6) 59.22 58.20 43.95  
p -value 0.00 0.00 0.00 J -Test
χχχχ2(5) 39.12 54.25 32.93 χχχχ2(42) 49.38
p -value 0.00 0.00 0.00 p -value 0.20

Panel B: Harvey's Approach
Instrument     φφφφm φφφφs φφφφh t -value
CONST  0.324 -0.091 0.510 2.98 -0.60 3.14
EMR (-1)  -0.036 0.051 -0.055 -5.20 5.53 -5.21
TB 1  -1.136 0.847 -1.061 -3.42 1.86 -1.96
TB 31  0.664 7.750 -0.557 0.89 6.71 -0.50
JUNK  0.097 -0.290 -0.018 1.88 -3.33 -0.21
DIV (-1)  -0.912 1.344 -0.796 -2.37 2.65 -1.17
LR Test
χχχχ2(6) 44.90 39.75 64.24  
p -value 0.00 0.00 0.00 J -Test
χχχχ2(5) 61.05 36.82 35.17 χχχχ2(42) 46.93
p -value 0.00 0.00 0.00 p -value 0.28
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