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Abstract 
This paper presents the basic framework of a comprehensive computational theory of 
stock market behavior, which we call Swingtum, taking multivariate stock index time 
series data as input, and producing probabilistic predictions of stock index movement at 
multiple time frames. The theory should also be applicable to other liquid markets. The 
Swingtum theory is based on the view that the movement of the stock market as a whole 
as represented by its benchmark index is driven by three types of forces: business 
dynamics, mass psychological dynamics, and news impacts, and consequently the market 
movement can be decomposed into four types of components: dynamical swings, 
physical cycles, abrupt momentums, and random walks. Dynamic swings include 
business cycles, stock life cycles, and Elliott waves of different levels, which typically 
have a fractal nature characterized by log-periodic power laws. Physical cycles includes 
anniversary days, seasonality cycles, and weekly cycles, which have relatively constant 
periodicity. Abrupt momentums may be caused by endogenous critical points or driven 
by exogenous news shocks or impacts. Random walks correspond to remaining 
randomness not explainable by any systematic force. The dynamic swings and physical 
cycles identified and modeled from the historical index time series will most likely define 
a quantum space of price and time in which the market will most likely travel from one 
quantum price level to another or from one time zone to another. There is a fundamental 
symmetry between price and time. The actual path is not only determined by dynamic 
swing phase and physical cycle phase, but also by the possible news impact. The more 
general theory of Swingtum extends the fractal and cyclical models of a univariate 
benchmark index to the multivariate time series models of intramarket and intermarket 
dynamical analysis. 
 
Keywords: Computational finance, stock market index, dynamic swing, physical cycle, 
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1. Introduction 
 
We observe that professionals and academics from each of technical analysis, 
quantitative analysis and fundamental analysis of the financial markets are beginning to 
recognize the importance of each other’s approach, and there is a tendency for the three 
to converge. The aim of this research is to combine technical analysis and quantitative 
analysis into a unified theory, which is the first major step in this convergence. Another 
motivation comes from our real-data neural network experiments which indicate a 
significant performance of over 90% correctness in predicting the next-day index change 
direction. It turns out both necessary and feasible to develop a comprehensive 
computational theory of stock market behavior, which could predict the market direction 
at multiple time frames using only index or price time series data. The ideas presented in 
this paper constitute a basic framework of such a theory which we shall call the 
Swingtum theory in the following and future discussions. 
 
Stock markets are complex dynamical systems whose elements are investors and traders 
with varying capital sizes using different investment and trading strategies. The behavior 
of the stock market of a given country is generally measured by a benchmark index such 
as ASX S&P 200 index for Australian stock market. The index is recorded in a time 
series whose time unit is usually one day or one minute. The daily index time series is the 
primary data source for technical analysis and quantitative analysis for short-term traders 
and mid- to long-term investors with time frames ranging from days through years to 
decades. The minutely index time series is the main data source for day traders with a 
time frame ranging from a few minutes through hours to a few days, normally less than a 
week. Each data point contains usually 5 numbers: the open, high, low, close price and 
the traded volume of that time unit. In general, if we only consider one number, it is the 
close price. Still the time series of an index is considered a univariate time series, even 
the single variable may be a vector of 5 elements. Looking inwards, a stock market has its 
internal structure consisting of a number of sectors, so the complete collection of all the 
sector indexes for a stock market may be called the intramarket time series which must be 
multivariate. Looking outwards, a stock market is positioned in the international stock 
market ecological systems. It may have its super markets that influence itself in an 
asymmetrical way, and there are also a number of other interrelated stock markets on the 
same level, so the influences are not uni-directional. Taking the Australian stock market 
as an example, the US stock market as represented by three indexes – Dow Jones, S&P 
500, and NASDAQ may be considered its super market, while the Japanese, Hong Kong, 
Korean, German, French and British stock markets are obviously its neighbors on the 
same level. The super and neighbor stock markets for a given stock market as well as 
typical bond markets, gold and oil markets and other interrelated financial markets may 
form the intermarkets of this stock market. The univariate time series of the stock market 
and the multivariate time series of its intramarkets and intermarkets provide the complete 
primary data source for prediction of the stock market movement. The secondary data 
source includes mainly the news (including all kinds of textual information) available 
from the Internet. However, this secondary data source is extremely irregular, and 
requires sophisticated techniques for automatic processing and interpretation. 
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This research aims at developing a comprehensive computational theory about the 
dynamics of the stock market for predicting the stock market index movement on 
multiple time frames from the primary data source of the index time series of this market, 
its intramarkets and its intermarkets, as well as from the automatic analysis of the news 
from Internet. We shall call the complete collection of our views to the stock market, our 
assumptions, our mathematical models as well as computational procedures the 
Swingtum theory. Although this theory will keep evolving, our basic view to the market 
is fundamental. Our inspirations come from a century-old technical analysis and the 
recent progresses in quantitative analysis of the financial markets, including econometrics 
and econophysics. A companion paper (Pan 2003) provides a joint review on technical 
and quantitative analysis and also has pointed out the possibility of a unified science of 
intelligent finance. More references on quantitative finance are provided by Sornette 
(2003), Farmer (1998), Farmer and Joshi (2002), Lo and McKinlay (1999), Campbell et 
al (1997), Mandelbrot (1982),  Zhou and Sornette (2003). Comprehensive coverage on 
technical analysis can be found in Murphy (1999), Achelis (2000), Bulkowski (2002), 
and Prechter (2002).  
 
The paper is organized as follows. Section 2 establishes our fundamental view to the 
stock market which is expressed in the Swing Market Hypothesis. Section 3 formulates a 
simple but general dynamic model of the market returns. Sections 4 and 5 presents the 
parametric models for characterizing fractal and cyclical market movements. Section 6 
describes the quantum price-time space in which the market is supposed to travel as 
driven by endogenous dynamics and exogenous news shocks or impacts. Section 7 
outlines a computational approach of nonparametric nearest neighbor pattern recognition 
exploiting multidimensional chaos in price time series. Finally section 8 concludes the 
paper. 
 

2. The Swing Market Hypothesis 
 
A long-standing conventional view of the mainstream economists to the financial markets 
is expressed in an Efficient Market Hypothesis (EMH), which views asset prices and their 
associated returns from the perspective of the speculator, and assumes the market is 
almost always efficient, meaning that the prices already reflected all current information 
that could help anticipating future events. Under the EMH, the stochastic process of 
market returns is modeled as uncorrelated random walk, so any profitable prediction of 
the market returns would be considered impossible. Although the strong form of EMH 
has been shown not true by many studies as reviewed by Pan (2003), EMH does provide 
a perfect reference with which more realistic market views can be developed.  
 
We consider that the market is driven by various forces of different origins, wave lengths 
and magnitudes, as well as different durations. Each force only has one dimension: either 
positive for upwards or negative for downwards. At any given time, all the effective 
forces combine to form a joint force which has a joint market impact leading to changes 
in price (or index). For generality, we will just talk about the dynamics of the price of a 
market. If the market is a stock, the price of the market is just the price of that stock. If 
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the market is the whole stock market for a national economy, the price of the market 
refers to a benchmark index  such as ASX S&P 200 index for the Australian stock 
market.  
 
Following Mandelbrot’s discovery of fractals in the financial markets, Peters (1994) 
proposed a Fractal Market Hypothesis (FMH) which basically says that the market is 
stable when it consists of investor covering a large number of investment horizons, and 
information is valued according to the investment horizon of the investor. Because the 
different investment horizons value information differently, the diffusion of information 
will also be uneven. At any one time, prices may not reflect all available information, but 
only the information important to that investment horizon (or time frame in our terms). 
The FHM owes much to the Coherent Market Hypothesis (CMH) of Vaga (1991) and the 
K-Z model of Larrain (1991).  
 
Like the FMH and CMH, our view to the market, which we call the Swing Market 
Hypothesis (SMH), is also based on the premise that the market assumes different states 
and can shift between stable and unstable regimes. However, we take one step further in 
considering the dynamic structure of the market. The Swing Market Hypothesis (SMH) 
proposes the following: 
(1) The market always consists of investors or traders with all possible different capitals, 

different time frames, different information conditions, and different skills. The ever-
lasting and ever-evolving differences in investors or traders are the permanent drivers 
of  market dynamics.  

(2) The market is sometimes efficient and other times inefficient, and the market tends to 
swing between these two modes intermittently. Each mode, efficient or inefficient, 
may comprise multiple regimes such as trending, cycling, spiking, consolidation, etc. 

(3) The market movement is driven mainly by three types of forces: business dynamics, 
mass psychological dynamics, and new impacts.  

(4) The market movement can be decomposed into four types of components: dynamical  
swings, physical cycles, abrupt momentums and random walks. 

 
Business dynamics include global and national business cycles, intramarket dynamics 
and intermarket dynamics, which usually refer to the fundamental economic and business 
conditions. Mass psychological dynamics include the greed and fear dynamics of 
investors and traders defined by human nature and also forged by existing popular 
knowledge, methodologies and technologies of technical analysis and fundamental 
analysis. For example, the appearance of a certain chart pattern may trigger similar 
trading decisions made by many different technical traders because they have all acquired 
similar technical analysis education. Both business dynamics and mass psychological 
dynamics can produce similar dynamical swings which can be characterized by 
mathematical fractal models such as log-periodic power laws. Elliott waves of different 
levels are the visual and qualitative description of dynamical swings by technical 
analysts. Although not as strong as dynamical swings, physical cycles do exist in the 
market, which includes anniversary days, seasonality cycles and weekly cycles. For 
example, statistical studies show that Thursday of a week is often the reversal if the first 
three days have trended in the same direction. There are even intraday dynamical patterns 
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given the daily market situation. Physical cycles have relatively constant periodicity. 
Abrupt momentums refer to drastic price movement which cannot be expressed in 
continuous analytical forms. Momentums may be caused by exogenous forces such as 
news shocks or impacts, or as critical points or singularities caused by endogenous 
dynamics. Random walks in the context of SMH correspond to remaining randomness 
not explicable by any systematic force.  
 
The next section derives a simple but fundamental price impact model of the stock 
market returns driven by market forces.  

3. A Fundamental Price Impact Model of The Stock Market 
 
Assume the market operates in the continuous time t , i.e. all trading occurs in a 
continuous flow, so we shall not need to distinguish between each individual order. We 
will only consider the price (or index ) of the market as a continuous function of 
time. At any time t , the joint market force acts upon the market and drives the price 

 up or down in a continuous flux of movement. Note that the market force may 
include all kinds of supply or demand, greed or fear, rational decisions or emotional 
reactions, etc. But it must realize its impact to the market price through all kinds of orders 
and transactions. We shall not concern ourselves with all the order details unlike the 
agent-based models such as one proposed by Farmer (1998). However, we shall follow 
some part of Farmer’s path in model building but our development is rather going into a 
direction quite different from his agent-based model. 
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Let be the price (or index) at time , the relative return is defined as )(tp t )(tRτ
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where is the time scale. In general, it is more common to use the log-return r defined 
as 

τ )(tτ
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For small changes in p , the log-return r and the relative return R are 
approximately equal.  
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Suppose at time   the price p  is changed to  immediately after the force  
acts upon the market, and this process can be expressed as  

t )(t )(~ tp )(tf

)),(),((~)(~ mtftpptp =             (3) 
where is the abstract mass of the market, which reflects how much the price will 
change relative to the magnitude of the force, and which may depend on the 
capitalization of the market and the past trading history.  

m

 
The price change should satisfy the following basic conditions 
1) The price is always positive but finite 

                   0              (4) ∞<< ),,(~ mfpp
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2) is an increasing function of the force , meaning that the price impact is  in the 
direction of the joint force and (maybe nonlinearly) proportional to force magnitude 
                                (5) 

p~ f
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3) If there is no force at all there is no market impact, i.e. 
                                 (6)  pmpp =),0,(~

4) is additive in the force 
                             (7) 
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~
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5)  is a decreasing function of the mass , meaning that the price impact is inversely 

(maybe nonlinearly) proportional to the mass 
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6) The price return due to the impact of the force is completely determined by and 
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is called the market impact function, and it must be an increasing function of  
and a decreasing function of m according to equations (5) and (8). 
δ f

 
Applying equation (9) into equation (7) gives a fundamental equation of the market 
impact function 

),(),(),( 2121 mfmfmff δδδ =+          (10) 
This equation has a simple but remarkable solution satisfying equations (5) and (8) 
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Therefore, the basic price impact function is derived as 
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The basic log-return dynamics function is thus 
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Or we should remember the time, 
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We see that this model is similar to Newton’s Second Law in physics. However, The 
abstract mass m is not a constant, but a slowly varying quantity in time relative to the 
variation of force . It can be understood as a scale factor that normalizes the order 
size and be considered as the liquidity. However, we prefer to consider it as an abstract 
quantity whose variation may be related to the clustered volatility. Considering the high 
autocorrelation of the clustered volatility, m  may be considered constant for a limited 
time period. However, we must be aware that m may vary slowly. A varying mass may 
be compared to the Einstein’s relativity theory in physics. Although professional traders 
are aware of the relativity of price in mass psychology, a modeling of price relativity 
requires further research. 
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The log-price at the current time t  can be obtained through the integral of the log-return 
from the starting time t to the current time  0= t
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We mainly consider two types of forces: dynamic swings  and physical cycles. For 
generality, assume there are L levels of dynamic swing forces , l , and K  
levels of physical cycle forces  g , . The joint force  is the sum of  
multilevel dynamic swing forces and multilevel physical cycle forces 
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Substituting equation (16) into equation (15) gives 
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are respectively the contribution to the current log-price ln by the evolutionary 
impact of the dynamic swing force and the physical cycle force . 
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equation (17) can be rewritten as 
)()()(ln 0 ttAtp Ψ+Φ+=           (23) 

Apparently, , ) are the joint dynamic swing component and the joint physical 
cycle component in the log-price. 
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4. Multilevel Fractal Swings In Log-Periodic Power Laws 
 
Each l -th level swing force  must have a certain wave form. A number of studies 
have shown the existence of the log-periodicity in the stock market indexes and prices, 
thus we consider that  should include a wave form in log-time   

)(tf l

)(tf l
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where are the log-period and phase respectively, and a time shift. Considering 
the existence of power laws and log-periodicity as demonstrated by Sornette’s group and 
other researchers, we consider p should have a form which includes a power 
component and a log-periodic wave component 

ll φω , lτ

)(tl

)])ln(cos(1[)()(ln llllllll tCtBAtp l φτωτ β +−+−+≈       (25) 
where are unknown parameters pertinent to level l . Sornette et al 
have also shown the possibility of using more complicated second-order and third-order 
Landau expansions, however, we consider our use of multilevel log-periodicities could 
render higher-order Landau expansions unnecessary. Using equation (10), the joint 
influence of dynamic swings can be expressed as 
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      (26) 

There are two different ways for actual computation using this model. The first is a 
general regression of all the unknown parameters of this model using the whole time 
series data set. The second way is a recursive procedure which successively fits a single 
level model of  (25) to one segment of the time series data corresponding to an Elliott 
wave in the context of the previous level. However, we recognize that a single log-
periodic power law model of (25) can only fit to a single wave, which is what was done 
by Sornette’s group. Such a single model cannot predict the regime shift after an anti-
bubble – a correction wave for a bullish trend – has finished. In a truly fractal procedure, 
on each level, we should fit an elementary fractal made up of two waves: a trending wave 
followed by a correcting wave. This elementary fractal for an up trending wave and its 
correcting wave is defined by a pair of  log-periodic power laws 
    ln      for        (27) )])ln(cos()(1[)()( lllllllll ttCtBAtp ll φτωττ ββ +−−++−+≈ lt τ<

    ln  for        (28) )])ln(cos()(1[)()( ''''' ''

lllllllll ttCtBAtp ll φτωττ ββ +−−+−+≈ lt τ>
In this case, should correspond to the critical point – the time of reversal from the 
trending wave to the correcting wave. Equations (27) and (28) should be fitted to the up 
trending wave and the correcting wave respectively. However, we consider there may 
exist certain geometrical relationships between the two sets of parameters: 

versus . This geometry, if existent such as 
Fibonacci ratios, would substantially reduce the number of unknown parameters. 
Observations from technical analysis show that this geometry is probabilistic.  

lτ

,l ω ),,,,( lllll CBA φβ ),,,,,( ''''''
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5. Multilevel Physical Cycles in Hilbert Transform 
 
Unlike the dynamic swings characterized by log-periodicity, physical cycles have linear 
periodicity and linear phase. Therefore, we can use the well-established signal processing 
techniques for detecting physical cycles including the periodicity and phase shift. Hilbert 
transform of a function is defined for all t by )(ˆ tf )(tf

  τ
τ
τ

π
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t
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Hilbert transform  is orthogonal to the original function , so it can be used to 
create an analytical signal from a real signal 

)(ˆ tf )(tf
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where  
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are the instantaneous amplitude and the instantaneous phase. Therefore, Hilbert transform 
provides a basic means for modeling physical cycles of linear periodicity and phase shift 
of the market price time series (taken as real signals). Ehlers (2001) developed a set of 
practical algorithms for calculating the dominant period and instantaneous phase from 
price time series data. However, his approach is limited to a single level. Our model of 
physical cycles generalizes to multilevels. In essence, we first generalize a simple Hilbert 
transform to a Hilbert wavelet, and then the time series data are analyzed through a multi-
scale wavelet transform into a wavelet pyramid. On each level of this pyramid, we detect 
the dominant periodicity and calculate the instantaneous phase from the Hilbert transform 
on that level. The outcome of this multilevel Hilbert transform and detection procedure 
will be a complete description of multilevel periodicities and instantaneous phases. Pan 
(1996) conducted a comparative performance study for a number of complex wavelets. 
 

6. A Quantum Space of Price and Time 
 
Elliott wave theory suggests that the price, more often than not, traces back to certain 
Fibonacci ratios such as 38.2%, 50%, 61.8%, 100%, etc. The support or resistance levels 
have a quantum nature (or at least geometrical). Gann was probably the first in 
discovering the quantum structure of the price-time space. Gann theory of price-time 
cycles (Pan 2003) suggests that there is a significant symmetry between the price and the 
time, and time is often more important than price. When certain time zones and price 
levels coincide, the reversal is imminent.  On the other hands, the log-periodic power law 
models show clear geometrical properties that are consistent with the Gann angles 
developed in technical analysis. The dynamic swings and physical cycles identified and 
modeled from the historical index time series will most likely define a quantum space of 
price and time. This space is divided by important price levels and time zones defined by 
the previous dynamic swings and physical cycles. The market will most likely travel from 
one significant price level to another or from one significant time zone to another. The 
actual path is not only determined by dynamic swing phase and physical cycle phase, but 
also by the possible news impact.  
 

7. Multidimensional Embedding and Nearest Neighbour Algorithm for  
    Prediction 
Based on the fractal model of dynamic swings and the wavelet analysis of physical cycles 
in a quantum space of price and time, we will investigate two different approaches for 
predicting the stock index movement The first is a direct application of the fractal model 

9 



and wavelet analysis whose parameters are estimated from the historical data, especially 
the last and current Elliott waves. The second approach is a pattern recognition approach 
based on chaos theory. Each time sample from historical time series data is embedded in 
a multidimensional feature space, where the feature vector consists of a subset of the 
fractal and wavelet parameters, especially the phases at the multiple time scales. For any 
given current time, its feature vector is constructed from the fractal and wavelet models, 
and then a certain number of its nearest neighbors are searched out from the historical 
pattern space. Finally, a certain nonlinear regression model can be estimated from the 
nearest neighbors. This model then can be used for prediction. Note that this regression is 
local to the nearest neighbors, and thus the predictive model is adaptive. 
 

8. Concluding Remarks 
 
The Swingtum theory outlined in this paper provides a comprehensive dynamic model of 
stock market integrating fractal dynamic swings and physical cycles as well as the 
quantum price-time space. The model is computable in terms of statistical parameter 
estimation and nonparametric multidimensional embedding and nearest neighbor pattern 
recognition. The theory is a step toward unifying professional technical analysis and 
academic quantitative analysis into a science of intelligent finance. The more general 
Swingtum theory should extend the fractal and cyclical models of a univariate benchmark 
index to the multivariate time series models of intramarket and intermarket dynamic 
analysis. 
 
This is an ongoing effort, further theoretical development, system implementation and 
real-data experiment will be reported in the future. 
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