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Abstract

Momentum effects in stock returns need not imply investor irrationality,
heterogeneous information, or market frictions. A simple, single-firm model
with a standard pricing kernel can produce such effects when dividend growth
rates vary over time. An enhanced model, under which persistent growth rate
shocks occur episodically, can match many of the features documented by the
empirical research. The same bagic mechanism could potentially account for

underreaction anomalies in general.

1 Introduction

There would appear be few more flagrant affronts to the idea of rational, efficient
markets than the existence of large excess returns to simple momentum strategies
in the stock market. So naturally do these profits suggest systematic underreaction
by the market, and so unpromising seems the attempt to associate the rewards with
risk factors, that asset pricing theorists have mostly seen the task as simply one of

deciding which sort of investor irrationality is at work.!

*London Business School tjohnson@london.edu. Comments are welcome.

!The original momentum findings are in Jegadeesh (1990) and Lehmann (1990). Behavioral
explanations appear in Barberis, Shleifer, and Vishny (1998), Daniel, Hirshleifer, and Subrahmanyam
(1998), and Hong and Stein (1999).



This article suggests that the case for rational momentum effects is not hope-
less, however. In fact, a simple, standard model of firm cash-flows discounted by an
ordinary pricing kernel can deliver a strong positive correlation between past real-
ized returns and current expected returns. The framework is simplified and ignores
many features crucial for valuing real firms. The point is just to call attention to
a direct, plausible, and rational mechanism which may contribute to this puzzling
phenomenon.

The key to the model is stochastic growth rates. By their nature, such growth
rates affect returns in a highly non-linear way, and the dynamics they imply differ
qualitatively from those of familiar linear factor models.

Specifically, the curvature with respect to growth rates of equity prices is extreme:
their log is convex. This property means that growth rate risk rises with growth rates.
Assuming that exposure to this risk carries a positive price, expected returns then
rise with growth rates. Other things equal, firms which have recently had large
positive price moves are more likely to have had positive growth rate shocks than
other firms, with negative growth shocks more likely among poor performers. Hence
a momentum sort will tend to sort firms by recent growth rate changes. In the absence
of information about starting growth rates, this will also then tend to sort according
to growth rate levels, and hence by end-of-period expected return.

When it comes to mimicking actual empirical results the basic model runs into
some problems. Most noticeably, to achieve large effects, growth rate shocks must
decay quite slowly. But this persistence implies risk premia — and the associated risks
— will also be persistent. By contrast, excess returns to portfolios formed according to
momentum vanish for holding periods beyond one year. Moreover volatility differences
between high and low momentum portfolios are not large in post-formation periods,
suggesting that risk changes too are transitory.

I address these and other shortcomings of the original model with a natural ex-
tension allowing shocks to growth rates to be episodic. More precisely, I envision a
two-regime process in which persistent growth shocks occur only in the more infre-

quent, short-lived state. This introduces a characteristic time scale beyond which



effects will be undetectable. The switching model can also explain the curious fact
that neither short, nor long portfolio formation periods capture changes in subsequent
expected returns.

While the enhanced model sacrifices the tractability of the original (and no closed
form results are available), its premise is not artificial. The intuition is simply that
persistent growth rate shocks represent major changes in business conditions, like
those associated with fundamental technological innovation. Such innovations do
tend to be rare and episodic. Moreover, technological shocks are likely to be common
within an industry. This fits nicely with the finding that momentum effects seem to
be largely a between-industry phenomenon (Moskowitz and Grinblatt 1999).

I do not, however, take the analysis to the multi-firm level. Nor are general equi-
librium effects considered. Furthermore, no strong claim is made as to the robustness
of the results. The aim is merely to show that momentum effects are not intrinsically
at odds with rational behavior.?

The paper contributes to the effort to understand the cross-section of expected
returns in terms of the time-varying risk characteristics of individual firms. The role
of changing capital structure (leverage effects) in altering expected returns on equity
was recognized as early as Merton (1974). However this line did not prove particularly
fruitful in accounting for asset pricing anomalies. Important recent work by Berk,
Green, and Naik (1999) demonstrated that a rich variety of return patterns, including
momentum effects, can result from the variation of exposures over the life-cycle of a
firm’s endogenously chosen projects. I complement this line of research by focusing
only on momentum, and delineating a simpler, and perhaps more general, connection
to expected returns.

The outline of the paper is as follows. Section 2 presents the basic set-up. The-
oretical results on the existence of momentum effects are established, and numerical

examples presented. Section 3 develops the regime-switching extension and illustrates

2Conrad and Kaul (1998) also suggest a non-behavioral mechanism, namely, that momentum
sorts simply select stocks according to their unconditional expected returns. This does not seem
to work empirically, however, mainly because stocks selected this way do not realize persistently
different returns. See Grundy and Martin (2000), Jegadeesh and Titman (2000).



its consequences. Simulations are used to demonstrate the ability of the model to pro-
duce realistic effects. The final section summarizes the project, and highlights some

areas for empirical investigation.

2 The Model

The setting used through out the paper is a standard, continuous-time economy, with

full rationality and complete information. The assumptions are as follows.

e The economy is characterized by a state-price density process A; which evolves

as a geometric Brownian motion

A
(2.0.1) % = —rdt+ oy dW™
t

where r and o, are fixed constants. This is tantamount to assuming that assets

are priced by a representative agent for whom A; is the marginal utility process.

e The equity is an unlevered claim to a perpetual, non-negative cash-flow process

D, with a random, stationary growth rate.

D
(2.0.2) % = ppdt+op dWD
t
(2.0.3) dpy = k(i—pe) dt + s dWH.

Here op, K, i, and s are constant, as are the three correlations between the
Brownian motions, denoted pap, pau, and pp,. Note that positive covariation
with A is desirable in a security for off-setting fluctuations in marginal utility.

The market price of D and p risk are then —pypoy and —pa,0 respectively.

Pricing the equity claim is straightforward under these assumptions. The solution
was recently derived by Brennan and Xia (1999) , who give the results summarized

in the following proposition.



Proposition 2.1 (Brennan and Xia, (1999)) Let P = P(D, u) be the price of a

claim to the dividend stream D. Then,

(A) A necessary and sufficient condition for P to be finite is
(L= — 71+ (0pppy + OapaL) 8/ K + oaoppap + 5°/(26%) < 0.

(B) If (; <0, then P(D,u) = Dy -U(u) and
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p* = B+ (0pppy+ orpaL) /K-

To study momentum, the two key processes are the cumulative excess returns
accruing to the holder of a unit investment in the stock (from some specified starting
date), and the instantaneous expected excess returns, which is just the drift of the
first quantity. I label these processes CER; and EER;. The latter is given by the risk
premia associated with the exposures of the equity, which is given by It&’s lemma.
Whence

i

EER: = —papoaop — PAUON T S

Then the dynamics of the cumulative excess return process are

dp, D
dCER, = ?t—rdt—kfdt
t

UI
= EER,dt+opdW ™ + s dw P,



Clearly the process U’ /U = U'(us) /U (1), the derivative of the log price-dividend
ratio, is central to the evolution of the system. While its explicit form is not very
revealing, the characteristic behavior of the system may be seen with the help of the

following lemma.

Lemma 2.1 Let U(z) be as defined in (B) of the proposition above, and assume the
condition in (A) is satisfied.> Then, for all z, U'(z)/U(x) is a positive, increasing

function.

Note: All proofs are given in the appendiz.

The lemma establishes the property mentioned in the introduction: that growth
rate risk (1/P - OP/0u o U'/U) rises with growth rates, regardless of the values
of the parameters chosen. Mathematically, this means that the sensitivity of the
pricing function to this state variable is stronger than exponential. Economically,
such extreme sensitivity can lead to purely rational price paths that display bubble-
like characteristics. For that reason, this class of models deserves careful scrutiny
by those inclined to interpret such behavior as evidence of expectational cascades,
irrationality or chaos. Nothing like that need be involved.

As described above, if growth rate risk has a positive price, then higher growth
rates must entail higher expected returns. And momentum effects then follow because
positive (resp. negative) cumulative returns typically imply ez post that recent growth
rate shocks have been positive (negative). To verify the intuition of this simple
conditioning argument, fix a time horizon, ¢, and consider how total excess returns

from t (today) to £ will covary with the expected excess return after £.

Proposition 2.2 Let F; be the time-t information set. Then, assuming pp, > 0

and pay < 0,

E[(CERt+g - E[CERt+e|Ft]) ¢ (EERt+g - E[EERt+e|Ft]) | Ft ] > 0

3The latter will be assumed implicitly in the remainder of the section.



The conclusion of the proposition just tells us that, given large returns to ¢, we
would indeed expect to see larger subsequent returns. The two correlation restrictions
are sufficient but far from necessary, as can be seen from the proof. The requirement
ppy > 0 ensures that growth rate increases are unambiguously “good news” and
will, in general, coincide with increasing stock prices. But a negative correlation
does not rule this out if the sensitivity to growth rates outweighs the sensitivity to
dividends, which occurs for many natural parameter choices. On the other hand,
the requirement p, < 0, which ensures that growth rate risk has a positive price, is
harder to relax.! Still, it can be the case that a counter-cyclical firm (whose growth
rate tends to increase in recessions, say) still exhibits momentum if also pp, < 0.

The exact covariance function whose sign the proposition gives is a function of the
starting growth rate, u;, and is not available in closed form. However it may be found
by integrating forward the expected instantaneous covariances from ¢ to ¢ 4+ ¢. These
expectations can be readily calculated from the Kolmogorov forward equations, since
their time-¢ values are known for all values of ;.

Slightly better, we may standardize these covariances and turn them into the

correlation function

4 covy(CERy1¢ , EERy1¢) du
var,(CERy¢) du)'/2 - ([ var,(EER ) du)!/2

L pe) = (¥
t

and compute all the moments in the same manner.

Figure 1 plots I'(¢) for time horizons out to four years for some different parameter
configurations. (The vertical bars in the figure delimit the correlations for values
of the starting growth rate of +£3 times its stationary standard deviation.) The
highest values correspond to a “normal” firm, which satisfies the conditions of the
proposition. Here the correlation is nearly one for all time-horizons. The values below
these correspond to the same parameter configuration, but with pp, = —0.5 instead

of 40.5. These too are large and positive, illustrating the secondary importance of

‘It seems plausible that marginal utility should be low when growth rates are high, and vice
versa. For this to hold at the aggregate level, with dividends fixed, would require more structure
than a simple endowment economy, however.
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that parameter. Finally, the bottom values correspond to a “counter-cyclical” firm,
as described above. These too are positive, though small, except for very low values
of py. Apparently momentum effects, as measured by this statistic, are a robust
occurrence. In fact, it is not easy to generate anti-momentum configurations that
are at all realistic and also large, without violating the regularity condition (A) in

Proposition 2.1.

Figure 1: Correlations: past cumulative return and current erpected return.
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The figure shows the correlation of realized returns over different horizon with the instan-
taneous expected excess return at the end of that period. Three cases are shown. The
top case (squares) has pr, = —0.5,pAp —0.5,ppy = +0.5, and op = 0.2. The mid-
dle case (circles) has pp, = —0.5,pap = —0.5,pp, = —0.5, and op = 0.1. The bottom
case (diamonds) has pp, = +0.5,pap = —0.5,pp, = —0.5, and op = 0.4. All cases use
r = 0.05,0p0 = 0.40,s = 0.03,x = 0.09. The vertical bars depict the spread implied by
letting the time-zero growth rate range over +3 times its stationary standard deviation.

For comparison with empirical work, and to gauge the magnitude of the theoretical

effect, one would like to know the exact relationship between a given observed return



and the subsequent expected return, as in
@(Z,K) = E(EERACER@ = Z)

(where the initial time is now being taken to be zero). To be clear, the conditioning
information here is only the realized excess return, and not the subsequent path of
the growth rate. Were u, known, EER, would be determined. While the model
envisions p being observable, it is not readily available to econometricians. So in the
empirical literature momentum is nearly always analyzed by tabulating subsequent
returns for portfolios formed on the basis of cumulative returns from 0 to £. More
generally, those subsequent returns can be measured at varying horizons 7. Then, in
terms of the model, one would want to compare these to the theoretical function of

three parameters
4T
®(1,¢,7) = E( / EER, du|CER, = 1) = E(CER,, — CER/|CER, = 1).
£

The functions © and ®, though not available analytically, can be computed by
Monte Carlo techniques. Below I present these for some chosen parameter configura-
tions.

First, Table 1 shows the expected excess return following a one-year period, con-
ditioned on ten possible return intervals. The intervals were chosen to match typical
intervals used by studies in forming portfolios. Specifically, I used the average of the
performance decile breakpoints for NYSE listed stocks from 1977 to 1992.5 For ex-
ample, the range labeled I1 that would, on average, have put the stock in the bottom
10% of all firms. (The exact breakpoints are given in the table caption.) The second
panel shows the parameters used in the different cases, along with some statistics

describing the stock price process they imply.”

SFormally, the right side is the derivative of the regular conditional measure E(EER,|CER; < 1).
If the initial growth rate is also taken as a parameter, ©(z, uo; £) may be defined likewise.

6This is the period used in Chan, Jegadeesh, and Lakonishok (1996). They report average six-
month returns by decile. I fit a normal distribution to these, scaled that by the square root of my
formation period (one year in the table), and calculated decile breaks from that.

"There is no claim to generality here. The cases were chosen to show the potential of the model.



For these plausible cases, a strong and monotonic relationship between past return
and future expected return is shown clearly in the table, with the magnitudes (given in
annualized percentage) being economically large. The empirical effect, as measured by
the average difference between post-formation returns of top and bottom intervals, is
larger still: typically around 8-12% per year for six-month holding periods (Jegadeesh
and Titman (1993), Rouwenhorst (1998)) in the post-war period. Matching this, while
obeying the integrability condition of Proposition 2.1, appears to be unachievable.
But when u shocks are sufficiently persistent and growth rates are highly correlated
with marginal utility, over half of this can be accounted for.

Some care is required in making comparisons between the table, which shows
the expected return for a single firm conditioned on its own performance, and the
results of portfolio studies. For one thing, the conditioning information embodied in
a performance sort is about relative returns. Being in the 10th decile literally means
doing less well than 90% of other stocks, not having return below (say) -15%.

Capturing that relative condition would entail modeling the full covariance struc-
ture of returns. Intuitively, however, the effect would be to make it somewhat more
likely that a firm in the extreme ranges has a low correlation with the market, and
one in the middle has a high correlation. Both partitions send high realized volatility
firms to the extremes. But, for a given level of volatility, that volatility is more likely
to be idiosyncratic when the sort is on absolute levels. Taking “correlation with the
market” to be synonymous with (negative) correlation with the state-price density,
this means that the table understates the risk premium of the middle-interval firms
and overstates that of the extremes, in comparison to a portfolio sort.

A second caution in interpreting the results is that the single-firm numbers in the
table do not reflect the information about the firm parameters (op, s, and k) that a
performance sort captures. For example, the extreme decile portfolios are more likely
to be composed of firms whose unconditional volatility is higher, meaning bigger op,
and s and smaller k. Likewise, since time-zero volatility is an increasing function of
growth rate, higher py and i may be more likely for the extreme performers. Here

the effect is ambiguous for the poor performers, though, because, higher initial y also
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implies higher drift for the stock price.

To fully analyze the effects of this additional parameter information would require
specification of a prior distribution over the possible configurations (as well as the
covariance structure again). Such an effort is beyond the scope of this note. But the
general effect is likely to work against the monotonicity exhibited in Table 1. The low
performers would be unconditionally more risky, leading to something of a U-shape
in expected returns.

One calculation that can be readily performed to illustrate the point is to inte-
grate out the dependence on . Since the growth rate follows a stationary Ornstein-
Uhlenbeck process, it has a steady-state distribution (normal with mean i and vari-
ance s/2k) which is a natural candidate for the unconditional distribution of .
Table 2 shows the effect on the cases in Table 1 of integrating over this distribution.
Now, for all the configurations, low realized returns imply higher expected returns
than in the previous table, because a high initial y is more likely. The volatility
effect outweighs the drift effect. Overall, comparing I1 to 110, there is still a strong
momentum effect. However, the empirical literature finds a monotonic relation here.®
This presents something of a problem for the model, and suggests that the picture —
at least as far as the worst performers is concerned — remains incomplete.

The model also has difficulty matching another feature of empirical studies: the
dependence of the strength of the effect on both the formation period (over which
momentum is measured to select portfolios) and on the subsequent holding period.
The typical patterns here are that (a) there are no extra excess returns to holding
momentum portfolios much beyond a year; and (b) there are no excess returns at all
when portfolios are formed on the basis of performance over periods longer than a
year or shorter than a few months.

This is too much complexity to reproduce in the current set-up. As indicated by

Figure 1, the strength of the correlation between CER and EER does not vary much

8Moreover, for individual stocks, the majority of momentum profits come from the underperfor-
mance of the losers, which also contrasts with the model’s prediction. The reverse, however, is true
for industry momentum portfolios (Moskowitz and Grinblatt (1999)). This suggests that the “firm”
modeled here might, in fact, be better interpreted as an industry.

11



with the formation period. Neither do expected excess returns differentials decline
much with holding period. They do decline, since p is a mean-reverting process (and
hence EER is). However, as already remarked, the decay rate x — which is in units
of inverse years — must be quite small to produce large expected return differences.

The situation is summarized graphically by Figure 2. Here I measure the strength
of the momentum effect by the differences in expected excess return between the high-
est and lowest performance brackets using different lengths of formation and holding
periods. The top panel (which uses parameter case A from Table 1) is qualitatively
similar to the empirical findings. The strength of the effect is indeed maximized by
using formation period of about a year. And the anticipated excess returns do decay
quickly with holding period. This is achievable because the parameter x has been set
to unity here, so one year is the characteristic decay period of growth rate shocks.

Unfortunately the effect is miniscule (the vertical axis is in annualized percentage
points). Shocks which decay this quickly do not have big consequences in terms of
discounted dividend streams. The bottom panel shows behavior typical of smaller
values of k. Here the characteristic decay length is 10 years. Now the decay with
respect to holding period is very slow, and the effect only grows stronger as longer
term returns are used to define momentum. The model simply lacks the flexibility
to capture the enigmatic pattern observed in real stocks while also producing strong
effects.

The lack of a rapid mean-reversion of expected returns points to another weakness
of the model as well. It predicts that volatility differentials across performance levels
should be persistent. The model implies that poor performers have low expected
returns because their future risk is low . And the future risk of good performers
should be high. Empirical studies fail to find such differences, in either systematic or
unsystematic risk, during the post formation period. This suggests that risk changes
also decay quickly.

Finally, one may mention the counterfactual implication of the model that high
expected returns should be associated with high price-dividend ratios. For, under the

model, both things increase with y. The model thus makes one asset pricing anomaly

12



Figure 2: Momentum Effect as a Function of Holding and Formation Periods.
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The graphs show the difference between expected excess returns conditional on high realized return
and that conditional on low realized return. The return differences are plotted as a function of the
expected holding period, and as function of the formation period over which realized returns are
measured. High (resp. low) realized returns are defined as returns that would be in the top (bottom)
decile if returns were normally distributed with annual mean and standard deviation matching the
unconditional distribution of NYSE stocks from 1977 to 1992. The two cases shown correspond to
the parameter settings A and B shown in Table 1.
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worse even as it addresses another.

There is no point in being too harsh on the model, however. Its virtue is its sim-
plicity. Clearly, real firms are not continuous, non-negative dividend streams.® The
remarkable thing is that one can generate such an apparently irrational phenomenon
from such an uncomplicated depiction. Still, the next section asks whether the ba-
sic mechanism of the model, generalized somewhat, can indeed address some of the

shortcomings outlined here.

3 A Generalization

There are a number of obvious ways to make the model of the last section more
realistic. This section implements one which retains the basic mathematical structure
and preserves the original intuition, while adding significant flexibility to the growth
rate dynamics. Specifically, the nature of the innovation process itself is permitted to
change intermittently. The idea is to introduce a characteristic time scale — the length
of time between such structural changes— which can allow the model to match the
apparent short duration of momentum-induced changes in excess returns and risks
that real stocks undergo. As a side benefit, the generalization brings the model closer
to the data on some other dimensions as well.

Formally, this is accomplished by augmenting the system with a two-state regime
indicator variable, S, upon which the dynamics of the growth rate process may de-
pend. Intuitively, I think of one of the regimes (S = 1, say) as standing for periods of
fundamental technological change in which growth rate innovations are more-or-less
permanent. The other regime (S = 0) would correspond to the more normal state-
of-affairs in which there may still be growth rate shocks, lasting for a quarter, a year,

or even a business cycle, but not changing the long-term fundamentals.!?

9 Although, again, this is perhaps a less bad model of an industry as a whole.
19The notion of small but persistent shocks to growth rates was suggested by Barsky and deLong
(1993) as an explanation of the apparent “excess” volatility of the stock market. Recently, Bansal
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Table 1: Theoretical Momentum Effects.

PANEL 1: EXPECTED RETURN AS A FUNCTION OF REALIZED RETURN.

Case: I1 12 I3 14 I5 16 17 I8 19 110
A 13.83 13.86 13.86 13.86 13.87 13.87 13.87 13.88 13.89 13.90
B 10.79 11.30 11.43 11.52 11.60 11.68 11.77 11.83 11.93 12.26
C 9.23 998 10.28 10.49 10.72 10.93 11.12 11.35 11.63 12.39
D 9.87 11.06 11.64 12.05 1237 12.77 13.12 13.48 14.01 15.46
E 9.54 10.83 11.38 11.74 12.16 12.55 12.85 13.27 13.79 15.38
F 8.60 9.78 10.48 11.00 11.56 12.09 12.63 13.21 14.02 16.14
PANEL 2: PARAMETER SETTINGS.

op s K PDy PAD PAu EERy VOLg Up
A 0.10 060 1.00 0.00 -0.50 -0.50 139 60.1 86.2
B 0.10 0.06 0.10 0.00 -0.50 -0.50 11.7  49.8 288
C 0.10 0.04 0.06 0.00 -0.60 -0.60 10.8 364 14.0
D 0.08 0.03 0.04 0.00 -0.70 -0.70 126 378 14.5
E 0.10 0.03 0.04 020 -0.20 -0.80 123 393 154
F 0.03 0.035 0.04 0.10 -0.40 -0.95 11.8 30.2 11.1

The first panel shows the instantaneous expected excess return (continuously compounded annual-

ized percentage) under four different sets of parameters, subsequent to a year in which the cumulative

return has fallen into one of the ten intervals labeled I1 to 110. The return intervals are defined by
the breakpoints (-19.53, -7.69, 0.58, 7.70, 14.30, 20.90, 28.03, 36.31, 47.85). I1 corresponds to returns
below -19.53%, 12 to returns between -19.53% and -7.69%, and so on up to returns over 47.85% in
I10. The values are calculated by Monte Carlo simulation of the model of Section 2. The second

panel lists the parameter settings for the cases. All cases put r = 0.05,04 = 0.40, 5 = o = 0.00.

The last three columns show the initial risk premium, volatility and price-dividend ratio for the

stock that are implied by the settings. The risk premium and volatility are annualized percentages.
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Table 2: Theoretical Momentum Effects (continued).

Case: I1 I2 I3 I4 I5 I6 I7 I8 I9 110
A 13.83 13.85 13.86 13.86 13.87 13.87 13.87 13.88 13.88 13.89
B 10.72 10.77 10.88 11.05 11.16 11.25 11.35 11.48 11.64 12.22
C 10.48 9.63 9.62 9.68 9.82 10.15 10.51 10.91 11.72 13.35
D 13.59 10.83 10.23 10.21 10.39 10.72 11.88 12.88 14.15 18.02
E 12.90 10.34 10.00 10.14 10.24 10.69 11.54 12.68 13.81 18.14
F 15.09 1094 9.77 9.88 10.35 10.69 12.15 13.76 16.05 22.71

The table repeats the calculation of Table 1 taking the beginning-of-period growth rate ug to be
distributed according to its stationary distribution (instead of being set to its unconditional mean).

In continuous-time, the process S is characterized by two switching intensities,
denoted Ay and A;, whose units are inverse-years. So if, for instance, Ay = 1/10,
then the expected duration of S = 0 episodes is 10 years. (Also, over a small time
interval At, the probability of a switch from S = 0 to S = 1 is A\g At.) The ratio
Mo/(Xo + A1) = S represents the fraction of time spent in the S = 1 state, and is also
the unconditional expected value of S. The intuition in the preceding paragraph then
suggests that S is small (transient shocks are more likely) and A, is large (persistent
shock episodes do not last long). For simplicity, S will be taken to be independent of
the other stochastic processes in the economy.

To model the changing degree of persistence between regimes, the growth-rate
process will be decomposed into two component processes representing the cumulative

long-term and short-term shocks. I call these x; and y;, respectively, and define them

as follows:
(3.0.1) do, = ki (T—x1) dt+ 51 Sy dW P
(3.0.2) dys = ko(G—ys)dt + so (1—5¢) dw

and Yaron (2000) showed that the same idea could potentially explain the equity premium puzzle.
Johnson (1999) introduces the idea of time-varying persistence to account for predictable patterns
of volatility dynamics.
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(303) My = xt+yt

with k1 < k¢. This formulation captures the idea of a given “shock” th(” ) possessing
an intrinsic trait, coded by S;, corresponding to the length of time it takes for its effect

on u to decay. Another helpful way to write p is in integral form

t t
1 = pio + 51 / e~ () 5 g + 5 / e=ro() (1) qW ).
0 0

(Here for brevity I am taking the long run values to be Z = § = 0.) This shows
explicitly how the effect over time of a shock experienced at time #y declines with ¢
as exp(—k;(t — 1y)), with &; fixed forever by Sy, .

A more parsimonious (though unsuccessful) model for y is also nested in this one.

If K1 = kg = k then we have
d,ut = K}(/:L—,ut) dt + S(St) th(M)

where now s switches between two values according to S;. This is just a simplified
way of introducing stochastic volatility to the p process. The corresponding case
where s; = sg in (3.0.1)-(3.0.2) also turns out to be inadequate.

Although the model now has four stochastic state-variables, it remains fairly

tractable. The dynamics are summarized in the following proposition.

Proposition 3.1 With the processes A and D defined by equations (2.0.1), (2.0.2),
and with the growth rate process given by (3.0.1)-(3.0.8), the stock price is

(3-0-4) P(D,:v,y, S) =D, (U(O) (xtayt) ) (1_St) + “(1) (xtayt) : St)

where u9() and uV() satisfy the coupled partial differential equations

2
S —
50“5121) + [ko(F — y) + so(pauoa + pDMOD)]uéo)

+  [s@ - )l + (@ +y) — 1+ papoacpu® + A —u®) —1=0
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The instantaneous expected excess return and volatility of P are given by
EER; = —oa {pADaD + PAp \Ilt}

1/2
VOL,; = (0% +2ppuop ¥V + \Ilf) /

where
uéO) ugvl)
\I/tE (1—St) 81 W—FS}-SO- u(l)

The covariance between expected excess returns and cumulative excess returns is

—pauon Lt - (pppop + V)

with ©) 5 o
0 u Uy
Tt = (1—St) + 810 a_y(ﬁ) -+ St S0 %(u(l))

Under this model, the stock price process follows a jump-diffusion. As the proof
notes, having a continuous process for the pricing kernel is tantamount to having
jump risk be unpriced. Thus expected excess returns do not depend on the jump
parameters. Instead, the EER process is exactly analogous to that of the model
derived in the last section. Again, the key ingredient is the log derivative of the
price-dividend ratio. Now, though, there are two such ratios: u®(z,y) and u™"(z,y).
Expected returns and volatility simply toggle between the processes implied by each
of these as S switches. In particular, if momentum effects result mainly from the
S = 1 regime, these will only last on average 1/\; years. If this number is say 0.5 to
1, that might account for the empirically observed dissipation of the effects for longer
holding periods. Moreover, it might also explain why the effects are strongest for
formation periods of about this length: large returns over a longer period might no

longer imply that S = 1 at the end of the period; large returns over a much shorter
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period would simply be too noisy.

Against this potential, the model now threatens to dilute the strength of predicted
effects, whereas the original model already fell short of the return differentials seen
in the data. The total effect mixes that of the two possible states of S at the end of
the formation period. If unconditionally the S = 1 state is unlikely, then so are any
expected return differentials. There is hope, however, for two reasons. First, stronger
effects can be induced in the S = 1 state of this model than could be in the original
one.'! Second, the S = 1 state implies higher stock volatility, making it relatively
more likely than the S = 0 state among extreme performers.

To investigate the net result, I explore some numerical examples. The coupled
© and uV resist analytical solution, but may be

solved with standard techniques. As a first case, I set \g = 1/36 and A\; = 1 so that

differential equations defining u

S = 2.7%, hence persistent shocks occur on average every 36 years and last around one
year. The persistent shocks are taken to have a decay constant of k; = 0.05 = 1/20
years, which implies a half-life of about 14 years for these shocks. (The transient
shocks have ko = 1.0. For the other parameter choices see Table 3.)

Figure 3 shows the resulting momentum effects for different holding periods and
formation periods. Now the model is able to achieve quite rapid decay of expected
excess returns with holding period, closely matching the rate reported by Rouwenhorst
(1998) and Jegadeesh and Titman (2000). Even better, the model is able to achieve
the empirically observed peak of maximum effect at a six-month formation window.
Most strikingly of all, the size of the effect can exceed that of the earlier model in
which all shocks are persisitent. The case in the figure even approaches the magnitude
found in the post-war data. This despite the fact that the firm being modeled here
only experiences persistent rate shocks once every forty years.

Looked at another way, this last finding is even more unusual. If all stocks had
these parameter values, it would seem to suggest that the entire momentum effect at

any one time could be due to the dynamics of a mere 3% of them.'? Hong, Lim, and

HTechnically, the integrability condition is weaker, due to the infrequency of the persistent state.
This allows more extreme parameter values.
12This is not quite accurate because their returns would all have to be independent for this kind
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Stein (2000) report that momentum effects do seem to be confined to a few stocks.
The present model can accommodate that.!® Following this line of thought, one could
well imagine that it would be extremely difficult empirically to detect the presence of
such a small number of firms by means of summary statistics. For example, median
earnings growth or median volatility might not vary at all across momentum deciles,
despite the predictions of the model.

Similarly, the possibility that momentum effects may only be activated 3% of
the time could provide a way to reconcile the model with an unconditional positive
relation between expected returns and price-dividend ratios. The lowest D/P firms,
for example, would only command a momentum premium if they were also in the
persistent-shock state. Unlike in a momentum sort, there would be no reason to
expect a concentration of such firms in extreme D/P deciles. So an overall discount
on the lowest stocks might easily outweigh the contribution of the small percent for
which S = 1.

One respect in which the model has not been improved is in matching the smooth,
monotonic increase of expected return with past return. In fact, the U-shape seen
in Table 2 is even more exaggerated. This is because, conditional on middling per-
formance, the un-volatile, transient state is much more likely. In this state risks are
lower, so expected returns are depressed.

One way to mitigate this problem is to raise the amplitude of the transient shocks.
This might be plausible: low-frequency fluctuations in growth rates might well be of
smaller magnitude than high frequency ones. Due to their rapid decay, these would
still have little impact on expected returns, but would command a higher premium.
Table 3 shows the momentum effect by performance interval for two cases which use
this assumption.

The first case (labeled G), is the one shown in the preceding figure. Here it is

still the case that expected returns initially decline with performance. All of the

of analogy to hold. But that would be incompatible with each having the same correlation with the
pricing kernel (-0.7) used in the example.

L3Moreover, the subset of stocks isolated in that paper are the smallest stocks. It would be no
surprise if this was also the group in which growth rates were the most volatile.

20



Figure 3: Momentum Effect as a Function of Holding and Formation Periods.

Case G

w B (&}

excess return (ann. %)

N

1yr

. . 3mo
holding period

formation period

The figure show the difference between expected excess returns conditional on high realized return
and that conditional on low realized return. The return differences are plotted as a function of the
expected holding period, and as function of the formation period over which realized returns are
measured. High (resp. low) realized returns are defined as returns that would be in the top (bottom)
decile if returns were normally distributed with annual mean and standard deviation matching the
unconditional distribution of NYSE stocks from 1977 to 1992. The figure employs the parameter
settings of case G (see Table 3).
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momentum effect is in the highest two or three brackets. The second case is able
to achieve a smoother dependence. Here, however, another degree of flexibility has
been added: the transient shocks have been assumed to have a lower price of risk.'*
This does not seem unduly demanding. In fact, the idea that marginal utility would
be more affected by long-run shocks than short-run ones is appealing. In terms of a
consumption-based model, this would just indicate a non-myopic policy. The effect
here is to make the Sharpe ratio under S = 1 much higher than under S = 0. This

causes the latter cases to be relatively more likely the worse the observed performance.

This section has pursued the insight of the last section that growth rate risks
might rise with growth rates. Embedding the basic model in a more flexible and
realistic one, the theory can capture the peculiar dependency of momentum profits
on the length of formation and holding periods. Using plausible parameter values,
the magnitude of the effect can attain roughly that in the data. The key addition
is the possibility of time-varying persistence in growth rate innovations. The model
implies that the effects might be entirely attributable to very infrequent, but highly

persistent shocks.

4 Conclusion

This paper advances the hypothesis that stochastic growth rates may account for
some or all of the momentum anomaly. The argument works because stock prices
depend on growth rates in a highly sensitive, non-linear way. This was demonstrated
by means of a simple partial-equilibrium model that has previously appeared in the
literature. A more sophisticated version incorporating the notion of episodic, highly-
persistent growth rate shocks was able to achieve agreement with observation along
a number of challenging dimensions.

This line of reasoning raises the possibility that the same basic mechanism could

play a role in all the anomalies which fall under the general heading of underreaction.

4That is, the two component processes z and y are allowed to have differing correlations with
the pricing kernel: |pay| < |paz|- The modifications to Proposition 3.1 are straightforward.
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Table 3: Theoretical Momentum Effects.

PANEL 1: EXPECTED RETURN AS A FUNCTION OF REALIZED RETURN.

Case: I1 I2 I3 I4 I5 I6 I7 I8 9 110
G 9.63 594 578 5.70 571 575 580 595 6.68 17.53
K 426 541 547 590 591 6.04 671 7.8 8.01 11.12

PANEL 2: PARAMETER SETTINGS.

O OD PDp  PAD A s K PAu

§=0: 028 016 1.00 -=0.70
G 040 0.05 0.00 -0.70 S=1: 1.00 0.08 0.06 —=0.70
§=0: 0.20 0.45 1.00 -0.90
K 0.9 0.03 0.0 -0.30 S=1: 1.00  .033 0.06 0.00

The first panel shows the instantaneous expected excess return (continuously compounded annu-
alized percentage), using the model of Section 3, for two sets of parameters, conditional upon the
previous 12-month performance. That performance is partitioned into ten intervals of cumulative
return, whose intervals are defined by the breakpoints (-19.53, -7.69, 0.58, 7.70, 14.30, 20.90, 28.03,
36.31, 47.85). I1 corresponds to returns below -19.53%, 12 to returns between -19.53% and -7.69%,
and so on up to returns over 47.85% in 110. The second panel lists the parameter settings for the
cases. All cases put » = 0.05,Z = § = 0.00. The initial values of the growth rate components are
distributed according to their steady-state density.
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As Mitchell and Stafford (2000) have argued, the mispricing evident in many long-
horizon event studies seems to be due to common exposure of event firms to the
same source of benchmark error. The model here suggests an economic rationale:
conditioning on a large stock return (the event) is like conditioning on a persistent
shock to dividend growth. Testing that proposition is the subject of ongoing research.

Of course, investors could also systematically underreact to news. The point is
not to insist that markets are rational, but only to elucidate one channel affecting
returns which does not rely on the opposite assumption.

Perhaps the most fundamental objection to risk-based explanations of momen-
tum (or any other cross-sectional anomaly) is that the risk part of the story seems
absent in the data. Momentum strategies don’t appear especially dangerous. This
paper has skirted that issue by not identifying the state-price density. It does not
formally predict that “beta” rises with past returns, only covariation with a yet-to-
be-determined process —A. For some, the explanation will remain unconvincing until
plausible candidates are found.

Clearly this is an issue for all of asset pricing. However, recently Chordia and
Shivakumar (2000) have, in fact, uncovered evidence of systematic variation in mo-
mentum profits with certain business cycle variables. Establishing a link between
growth rate shocks and these cyclical variables is a logical next step in developing the
case presented here. The connection does not seem remote a priori. That exploration

is left for future research.
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Appendix

Proofs.

Lemma 2.1 Let U(x) be as defined in (B) of the Proposition 2.1, and assume the condition

in (A) is satisfied. Then, for all z, U'(z)/U(z) is a positive, increasing function.

Proof. First, the integrand in the definition of U() is positive, so U > 0 for all z. Next,
by assumption, {; < 0. So regardless of the signs of the other terms in the exponential, that
integrand is bounded by exp(¢1y) (where y is the integration variable). Hence differentiation

with respect to z may be taken inside the integral. Call the integrand h(y). Then
d R N -
dx/h(y) dy = Fu/e h(y) dy.
and [ e "h(y)dy < [ h(y)dy. So
Ua) = [U6@) = elE [ eny)ay)
el —%0) [/ h(y) dy — /e_”yh(y) dy] > 0.

A= X

To see that U'(z)/U(z) is increasing, write

(Z’)' _ 1 (fe‘”yh(y) dy)'
U s\ [h(y)dy

1 [f 2Ry dy (fe—wh(y) dyﬂ

k2| [hiy)dy J h(y) dy

1 1 |: / —2Ky / / — 2:|
= e h(y) d h(y)dy) — (| e ™ h(y)d

2 ([ hiy) dy)? ( () dy)( [ h{y) dy) — ( (y) dy)

The third term in the last expression is positive by an application of the Cauchy-Schwartz

inequality. QED

25



Proposition 2.2 Let F; be the time-t information set. Then, assuming pp, > 0 and

pap <0,

E[(CER¢4¢ — E[CER¢ 4| F¢]) - (EERy4¢ — E[EER 44| F]) | F¢ | > 0.

Proof. The covariance to ¢ + £ is the integrated expected instantaneous cross-variation

of the two processes. From It6’s lemma, the diffusion term of the EER process is
U’ (1)
—pauA S | — ] dW M.
PApOA ( U ) t
So the instantaneous covariance is

U’ U’
—PApOA S (ﬁ) : (UDPDM + T s) .

The terms involving U( ) are positive by the lemma. So are o, op, and s. The assumption
about the correlations then ensures that the cross variation is always positive. Hence its

integrated expected value from ¢ to ¢t + £ is. QED

Proposition 3.1 With the processes A and D defined by equations (2.0.1), (2.0.2), and
with the growth rate process given by (8.0.1)-(3.0.8), the stock price is

(A.1) P(D,z,y,8) = Dy - (u® (x4, 9:) - (1= Se) + uV (@, 9) - St)

where u(9 () and v () satisfy the coupled partial differential equations

2
S
EOU%) + [ro(@ — y) + so(pauoa + ppuop)]u
+ [61(Z — 2)]ul? + [(z +y) — r + papoaoplu® + Xg(u) —u®) —1=0
2
Tul) + [a(@ - 0) + s0(pason + o))
+ [0 (5 — 9) + [(z +y) — r + paponoplu + A (@ —uM)y —1=0.
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The instantaneous expected excess return and volatility of P are given by

EER; = —oA {pApoD + pau ¥t}

1/2
VOL, = (0} +2ppuop ¥; + ¥}

where

Ty =(1-5,) -5 - Si-s0- 2.
e =(1=5) s G ¥ S0

The covariance between expected excess returns and cumulative excess returns is

—papoA Yt (pppop + Vi)

with 0 1)
8 Uy 8 Uz
th(]__St) 31.@(W)+St-30-£(m)-

Proof. The proof is an application of the generalized It6 formula for jump processes (c.f.
(Gihman and Skorohod 1972, I1.2.6)) to the product A;P;. Using this and the specification

of equation (2.0.1), the expected instantaneous change in this product is

(A2) —T'Pt+DPt'At + <A,Pt>+
{M(P(E=1)-P(5=0)(1-5) + M(P(E=0)-P(E=1)85} A

where DP, is the usual It6 drift

2 2 2 2 2 2
0h 90 P S04 o O°P ST, O°P
5> D 302 + 5 (1 S)—y + (85 +
d*P o?p o?p
ppyop D 3o (I_S)aD—ay + ppzop D s (S)m + pay 5081 (S) (1=8) 53—~

oP

D) 2 j—1y)) — 7 — 1)) —
HuD) 55+ (kalT = v) 5o + (a3 =) G
and (A, P;) the instantaneous covariance

oP

oP oP
oA {(PAD op D) ap T (pAy S0 (1=5)) By + (prz 51 5) %} .
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The final term in (A.2) is the contribution to the expected change from the possibility of a
jump in P, which is multiplied by the jump intensity relevant to the current state. (Note

that the continuous process A can have no covariation with the jump component of P.)

Next, by definition, the pricing kernel A (whose existence is assumed) determines P by

the equation
o0
AtPt = Et [/ AuDu du]
t

Since the process Eq[[;° AyD, du] is a martingale, the expected change in A, P, must also
be given by —A;D;.

Equate this to (A.2), and use S (1—S) = 0 to simplify. Also noting that we have defined
the innovation to both  and y to be the same process dW*#, the six correlations collapse to
three (labeled in the obvious manner). Plugging in a solution of the form (A.1) and dividing
by D yields a partial differential equation which the price must satisfy. This one equation
must be satisfied whether S = 1 or § = 0. The two equations given in the proposition

correspond to these two cases.

The derivation of the moments of the return process in terms of the solution is then a

straightforward application of It6’s lemma. QED
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